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Abstract. A growing number of indicators are now being used with some
confidence to measure the metallicity(Z) of photoionisation regions in planetary
nebulae, galactic HII regions(GHIIRs), extra-galactic HII regions(EGHIIRs) and
HII galaxies(HIIGs). However, a universal indicator valid also at high metallic-
ities has yet to be found. Here, we report on a new artificial intelligence-based
approach to determine metallicity indicators that shows promise for the provision
of improved empirical fits. The method hinges on the application of an evolu-
tionary neural network to observational emission line data. The network’s DNA,
encoded in its architecture, weights and neuron transfer functions, is evolved us-
ing a genetic algorithm. Furthermore, selection, operating on a set of 10 distinct
neuron transfer functions, means that the empirical relation encoded in the net-
work solution architecture is in functional rather than numerical form. Thus the
network solutions provide an equation for the metallicity in terms of line ratios
without a priori assumptions. Tapping into the mathematical power offered
by this approach, we applied the network to detailed observations of both neb-
ula and auroral emission lines from 0.33µm − 1µm for a sample of 96 HII-type
regions and we were able to obtain an empirical relation between Z and S23

with a dispersion of only 0.16 dex. We show how the method can be used to
identify new diagnostics as well as the nonlinear relationship supposed to exist
between the metallicity Z, ionisation parameter U and effective (or equivalent)
temperature T∗.

1. Introduction

Emission lines due to photoionisation of nebulae by massive stars are the most
powerful indicators of the chemical evolution of galaxies in both the near and
the intermediate redshift universe. The wealth of new data coming from galaxy
spectroscopic surveys and from observations with integral field units of nearby
galaxies allow for a detailed inventory of the chemical composition of star form-
ing galaxies. Abundance determinations in HII regions are relatively straight-
forward to calculate if the electron temperature, Te, can be measured directly
from the observations. However, in many cases, the Te diagnostic lines are too
faint to be detected due to the strong cooling effect of metals in these regions.
Faced with this obstacle, Pagel et al. (1979) and Alloin et al. (1979) pioneered
methods based on the O23 parameter that allow one to estimate the metallicity
Z 1 using strong lines only.

1Throughout the paper “metallicity” is used with the meaning of “oxygen abundance”
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The strong line methods assume that all HII regions are essentially characterised
by their metallicity. However, the metallicity Z and other empirical parameters
such as the hardness of the ionising radiation (which can be inferred from the
spectral energy distribution and parameterised through the effective or equiva-
lent temperature T∗) and the ionisation parameter U are nonlinearly inter-linked
(Vı́lchez & Pagel (1988) and Dı́az et al. (1991)) but the exact nonlinear relation
between Z, U and T∗ is still unknown. Observed line ratio diagnostics are cen-
tral to the whole endeavour, hence the large amount of literature devoted to the
identification of abundance indicators and their calibration (Pérez-Montero &
Dı́az (2005) and Staśınska (2004)). In fact, these are two separate and important
issues - the choice of indicator, and the proper abundance calibration. Although
a plethora of different indicators have been proposed, such as O23, O3N2, N2,
S23, Ar3O3 and S3O3, their full calibration over the total range of metallicity has
not yet been possible with confidence due to a lack of data and understanding
of the physics in metal-rich HII regions (Bresolin (2006) and Pilyugin (2006)).
Temperature fluctuations are known to play an important role (Peimbert (1967)
and Peimbert et al. (2006)) and the differences between abundances calculated
using optical recombination and collisionally-excited lines (that can vary by up
to a factor of 70 (Liu et al. 2006) appear to be related to atomic physics in
the infrared. With this in mind we have developed a new artificial intelligence
technique to find, from the optical emission lines, the best indicators so that the
method can be applied with confidence to forthcoming infrared emission line
data.
Here, we present our results for a study of HII-like regions using the S23 diag-
nostic to illustrate the basic principles. We have selected S23 from the most
commonly-used indicators as it has low dispersion and is quasi-linear up to and
slightly above solar metallicity (see table 4 in Pérez-Montero & Dı́az (2005)). Of
course, at high metallicities it is expected to turn over, following a parabolic and
double-branched curve as for O23 due to effective cooling from S ions. Our ap-
proach to the problem uses a genetic network to seek out the empirical relation
between metallicity and S23.

2. SAGAN

The Scale-invariant And Genetically-Adapted neural Network (SAGAN) has
been developed to deduce empirical laws from observational data (Taylor, Dı́az
& Werner 2006). It uses a simple backpropagation error rule and is capa-
ble of correctly identifying an equation for the functional relationship
f between the independent variable xn and the dependent physical variables
(x1, x2, · · · , xn−1) associated with training data. Contrary to the common prac-
tice of subjectively choosing from a library of fitting functions, the network,
objectively and unambiguously finds the function that best fits both the train-
ing and evaluation data, and hence has great generalisation potential. Even
when fed with multi-dimensional data having measurement errors of 10%, the
network successfully identifies exact equations (Taylor, Dı́az & Werner 2006).
Key to its success is a genetic algorithm that evolves the network DNA encoded
in the distribution of neuron weights, connectivity and transfer functions. The
neuron transfer functions undergo selection from a list of 10 mathematical func-
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tionals and are what provide semantic structure to the network solutions found.
Another feature central to the success of SAGAN, is that it is a dimensionless
network; meaning that it benefits from the dimensionality reduction associated
with applying the π-theorem (Buckingham 1914) to the data (Taylor & Dı́az
2006). In addition to producing a network that is topologically simpler, the de-
generacy inherent in the dimensionless groups πj facilitates learning and leads to
an error reduction of several orders of magnitude (Taylor, D́ıaz & Werner 2006).
Metallicity and line ratios are, by definition, dimensionless quantities; never-
theless SAGAN exploits the degeneracy associated with combinations of dimen-
sionless groups of variables to expand its search space automatically. SAGAN
operates as a supervised neural network. The metallicity Z is calculated indepen-
dently using the auroral line method (incorporating Te and ionisation correction
factor effects) and provides the supervising component. SAGAN then cycles
through a genetic algorithm, evolving its network DNA. In each generation, a
population (p) of 200 “parent” network solutions is generated using the standard
genetic operators of mutation, replacement and cross-over. Those parents pro-
viding the best fit to the data are kept, replicated and bred through cross-over
to generate the basis for mutating the next generation. The best individuals in
each generation are retained so that they are not lost from the gene pool. The
process continues until the network error E,

E =
1

p

∑

p

[f(x1, · · · , (xn−1) − (xn)p]2 (1)

converges to a minimum value or until the maximum number of generations
specified is reached. The correct empirical law is found when the encoded net-
work DNA has evolved to the point that it is capable of decoding the causal
relation existing between input and output observables. In the case of the rela-
tion between Z and S23, the network error is equal to the dispersion in dex. The
minimum error solution is then converted into an empirical equation by reading
from right to left and summing nodes.

3. Results

We collected optical emission line data for 121 HII-type photoionisation regions
that included the sample of 108 HIIGs, GHIIRs and EGHIIRs studied by Dı́az
& Pérez-Montero (2000) plus an additional 8 HIIGs from Hägele et al. (2006)
and 5 metal-rich GHIIRs taken from Bresolin, Garnett & Kennicutt (2004). Of
the 121 objects, we selected 96 for which both de-reddened nebular and auroral
lines of S, O and N in the optical existed, along with an accurate measurement
of the metallicity Z complete with measurement errors. The value of the S23

parameter (Dı́az & Pérez-Montero 2000),

S23 =
[SII ]λλ6717, 6731 + [SIII ]λλ9069, 9532

Hβ
(2)

for each object, along with its metallicity, provided the training data set for
SAGAN. In order to create a validation data set, we generated a further 96 points
within the error bars of the training data using a random number generator
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based on the normal distribution. During the evolution process, SAGAN outputs
the network solution for those generations during which there is a drop in the
dispersion (network error). Figure 1 shows the network solutions associated
with the largest error drops. Although some 1352 generations taking 2 days of
runtime on a dual 3Ghz PC were required, SAGAN achieved a final linear fit
having a dispersion of only 0.16 dex.

Figure 1. a) The list of neural transfer functions and b) the empirical net-
works (1 − 4) deduced by SAGAN during its evolution. Note the transfor-
mation to exponential space (e-space) needed to handle negative values of
log(S23) while keeping the network dimensionless.

In order to obtain the empirical law, one has to read from right to left from
the output variable back through the network to the input variables, applying the
neuron transfer functions and summing the weighted node paths. The empirical
relation for figure 1b)4 for example is,

eZ = e{1.36ln(elog(S23))}+8.28ln(e). (3)

Noting that ln(ex) = x and equating the exponents of e, we obtain,

Z = 8.28 + 1.36log (S23) . (4)

The biggest improvements can be seen to be associated with topological
changes in the network. In figure 2, we have extracted the empirical laws from
the network and plotted them over the training data. In figure 2a), we can see
that after only 3 generations, SAGAN identified a linear fit to the data having a
dispersion of 0.22 dex. Although this is slightly higher than the 0.20 dex disper-
sion published for S23 (Dı́az & Pérez-Montero 2000), SAGAN rapidly improved
upon this in its sixth generation shown in figure 2b) with a sigmoidal fit to the
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data having a dispersion of 0.183 dex. The next improvement occured in the
111th generation in figure 2c) when SAGAN found a cubic fit to the data having
a dispersion of 0.181 dex. After 2 days runtime, and after 1352 generations,
SAGAN unexpectedly found in figure 2d) a linear fit with a dispersion of only
0.16 dex. We left SAGAN running until its 8500th generation and no further
improvement was found. The return to a linear fit after so many generations
of evolution needs some comment. Why did SAGAN not find this linear fit di-
rectly in generation 3? It appears that it has investigated other functional forms
and then after a process of significant learning has adjusted the gradient of the
linear fit to minimise the dispersion. Contrary to least squares fitting routines,
SAGAN, has experimented with numerous fitting functions and then adjusted
the most suitable one. We consider this the main advantage of our network -
that it objectively seeks the best fitting function.

Figure 2. The empirical fits obtained by SAGAN during generations 3, 6,
111 and 1352 of its evolution. In a) we also plot the linear and quadratic fits
obtained by Dı́az & Pérez-Montero (2000).
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4. Conclusions and Future Plans

We have shown that SAGAN produces accurate results that are robust to errors
on the training data. Furthermore, the symbolic equations extracted are the
best empirical laws to date that fit observational data of HII regions. The fits
are consistent with earlier results obtained by subjectively fitting the data with
linear and quadratic least-square fitting routines (Dı́az & Pérez-Montero 2000).
With the sample of 96 objects for which we have auroral and nebular emission
lines of O, N and S, we are now investigating n-dimensional indicators of the
form Z = f(x1, x2, · · · , xn) + c with each xi involving a line ratio and c is a
constant. We will shortly report on SAGAN’s findings for these potentially new
indicators. Additionally, we are compiling a list of relations involving emission
line ratios of O, N and S that are correlated with metallicity Z, ionisation
parameter U and effective or equivalent temperature T∗ in order to deduce the
nonlinear relationship f(Z,U, T∗) = 0 for application to infrared data in the
near future.
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original code upon which SAGAN is based.

References

Alloin, D., et al. 1979, A&A, 78, 200
Bresolin, F. 2006, in The Metal-Rich Universe, ed. G. Israelian & G. Meynet, (Cam-

bridge: Cambridge University Press), in press, astro-ph/0608410
Bresolin, F., Garnett, D.R., Kennicutt, R.C. Jr. 2004, ApJ, 615, 228
Buckingham, E. 1914, Phys.Rev., 4, 345
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