
Advances in Hellenic Astronomy during the IYA09
ASP Conference Series, Vol. 424, 2010
K. Tsinganos, D. Hatzidimitriou, and T. Matsakos, eds.

Towards a Unified Source-Propagation Model of Cosmic Rays

M. Taylor

Institute for Space Applications and Remote Sensing(ISARS), National
Observatory of Athens(NOA), Metaxa and Vasillis Pavlou Street, Penteli,
Athens 15236, Greece.

M. Molla

Division de Astrofisica de Particulas, Centro de Investigaciones Energticas,
Medioambientales y Tecnolgicas (CIEMAT), 28040 Madrid, Spain.

Abstract. It is well known that the cosmic ray energy spectrum is multifractal
with the analysis of cosmic ray fluxes as a function of energy revealing a first “knee”
slightly below 1016 eV, a second knee slightly below 1018 eV and an “ankle” close
to 1019eV. The behaviour of the highest energy cosmic rays around and above the an-
kle is still a mystery and precludes the development of a unified source-propagation
model of cosmic rays from their source origin to Earth. A variety of acceleration and
propagation mechanisms have been proposed to explain different parts of the spectrum
the most famous of course being Fermi acceleration in magnetised turbulent plasmas
(Fermi (1949)). Many others have been proposd for energies at and below the first
knee (Peters & Cimento (1961); Lagage & Cesarsky (1983); Drury et al. (1984);
Wdowczyk & Wolfendale (1984); Ptuskin et al. (1993); Dova et al. (0000); Horan-
del et al. (2002); Axford (1991)) as well as at higher energies between the first knee
and the ankle (Nagano & Watson (2000); Bhattacharjee & Sigl (2000); Malkov &
Drury (2001)). The recent fit of most of the cosmic ray spectrum up to the ankle using
non-extensive statistical mechanics (NESM) (Tsallis et al. (2003)) provides what may
be the strongest evidence for a source-propagation system deviating significantly from
Boltmann statistics. As Tsallis has shown (Tsallis et al. (2003)), the knees appear as
crossovers between two fractal-like thermal regimes. In this work, we have developed
a generalisation of the second order NESM model (Tsallis et al. (2003)) to higher or-
ders and we have fit the complete spectrum including the ankle with third order NESM.
We find that, towards the GDZ limit, a new mechanism comes into play. Surprisingly
it also presents as a modulation akin to that in our own local neighbourhood of cos-
mic rays emitted by the sun. We propose that this is due to modulation at the source
and is possibly due to processes in the shell of the originating supernova. We report
that the entire spectrum, spanning cosmic rays of local solar origin and those eminat-
ing from galactic and extra-galactic sources can be explained using a new diagnostic -
the gradient of the log-log plot. This diagnostic reveals the known Boltmann statistics
in the solar-terrestrial neighbourhood but at the highest energies - presumably at the
cosmic ray source, with clearly separated fractal scales in between. We interpret this
as modulation at the source followed by Fermi acceleration facilitated by galactic and
extra-galactic magnetic fields with a final modulation in the solar-terrestrial neighbour-
hood. We conclude that the gradient of multifractal curves appears to be an excellent
detector of fractality.
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1. Theory

1.1. Heuristic Approach

The Boltzmann-Gibbs (B-G) equilibrium distribution

pi = e−βEi/Z (1)

with β ≡ 1/kT ≥ 0, state energy Ei and partition function Z ≡
∑

j e−βEj can be

obtained (Tsallis et al. (1998)) (ignoring the trivial normalisation factor 1/Z) from the
solution of the linear ordinary differential equation (ODE),

dpi/dEi = −βpi. (2)

For thermodynamically anomalous systems with generalised entropic form Sq = k(1−
∑

i p
q
i )/(q − 1) then, optimisation under appropriate constraints yields instead the

NESM power-law distribution,

pi ∝ [1 − (1 − q)βqEi]
1

1−q ≡ e
−βqEi
q (3)

(definition (Tsallis et al. (1998))) that recovers the B-G statistical weights for q = 1
by setting βq ≡ β. As above, this distribution can also be obtained from the solution of
the nonlinear ODE,

dpi/dEi = −βqp
q
i (4)

with βq ≥ 0; q1 ≥ 1. In Tsallis et al. (2003), this heuristic approach was taken further
to create a crossover from B-G (q = 1) to NESM (q %= 1) for q > 1 and β << βq with
the ODE,

dpi/dEi = −βpi − (βq − β)pq
i . (5)

The subsquent generalisation,

dpi/dEi = −βq′p
q′

i − (βq − βq′)p
q
i , (6)

then allowed for the production of the additional crossover at the first knee allowing
Tsallis (2003) to obtain the excellent fit of the spectrum up to the second knee shown
in Figure 1.

1.2. Generalised multifractal spectra

Generalising the heuristic approach above so that at lowest energies, B-G statistics
dominates and as we go to higher energies, we allow for a transition from B-G to
NESM statistics progressing through a series of n− 1 cross-overs from one anomolous
scale-free region to another as follows,

dpi/dEi = −βnpqn
i −

n−1
∑

j=0

[

(βj − βj+1)p
qj

i

]

(7)

then, for the case n = 3 we can extend the Tsallis source-propagation model of the
cosmic ray energy spectrum to include also a third crossover at the ankle whereby,

dpi/dEi = −(β − β1)pi − (β1 − β2)p
q1
i − (β2 − β3)p

q2
i − β3p

q3
i . (8)
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Figure 1.: The excellent single-theory fit to the cosmic ray flux-energy spectrum pro-
vided by NESM (Tsallis et al 2003). The energy spectrum of π0 particles in the direc-
tion of the Tycho SNR (inset) shows that the pion spectrum coincides with the NESM
(galactic) propagation region up to the first knee.

1.3. Solution of ODEs

The exact solutions of ODEs like those above are in general given by pi ∝ f(Ei) where
f−1(x) is an explicit monotonic function of x involving hypergeometric functions. The
first step involves writing the integral equation for the general ODE above,

Ei =

∫ 1

pi

dx

βnxqn +
∑n−1

j=0

[

(βj − βj+1)xqj

. (9)

This can be solved using Gauss hypergeometric series,

2F1

[

(A, B); C; z
]

=
∞

∑

n=0

(A)n(B)n

(C)n

zn

n!
(10)

expressed in terms of the rising factorials or Pockhammer symbols: (A)n, (B)n and
(C)n such that for example (A)n = A(A + 1)(A + 2)...(A + n − 1), (A)0 = 1.
Expressed in this series form, E = f(pi) can be written compactly.

1.4. Relating the solutions pi to the cosmic ray flux

The flux Φ(E) can be obtained straightforwardly from pi ∝ f(Ei) by calculating the
density of states ω(E). The density of states of an ideal gas in three dimensions is given
by ω(E) ∝ E2, hence Φ(E) = AE2f(E), where A is a normalising factor (and where
red shift effects have been neglected). With this expression we fit the observational data
up to the highest energies as shown in Figure 2.
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Figure 2.: The improved fit to the cosmic ray spectrum at the highest energies in the
ankle region provided by the generalisation of the Tsallis theory.

1.5. Gradient of the logarithmic energy spectrum

The cosmic ray energy spectrum is usually plotted on logarithmic axes such that scale-
free regions correspond to linear portions of the spectrum. It has already been shown
that there are at least 2 such anomalous regions split by a cross-over at the knee. In fact,
a plot of the gradient of the logarithmic cosmic ray energy spectrum is even more
revealing. In order to construct such a plot, it is necessary to calculate the gradient m,

m =
d(logpi)dpi

d(logE)dE
=

dpi

dE

(E

pi

)

. (11)

Horizontal regions of a plot of m versus logE then reveal scale-free regions. Note that

dpi/dE is just the generating ODE so that for the case dpi/dEi = −βq′p
q′

i − (βq −
βq′)p

q
i then,

m =
[

− βq′p
q′

i − (βq − βq′)p
q
i

](E

pi

)

≡ −E
[

βq′p
q′−1
i + (βq − βq′)p

q−1
i

]

(12)

and so forth. Figure 3 shows the result. The simple logarithmic plot is deceptive to the
eye. The log-gradient plot on the other hand shows us scale-free regions more clearly.
The fit given by q3 to the highest energy cosmic rays is almost perfectly Bolzmann-
Gibbsian suggesting that the whole cosmic ray spectrum should be divided into 4 dis-
trict physical domains as shown in Figure 4.

2. Discussion

The generalisation of the NESM heuristic equation to higher orders has provided an ex-
cellent fit over the whole cosmic ray spectrum with a single differential equation whose
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Figure 3.: The multifractal log-gradient model indicating clearly the improvement over
the earlier second order Tsallis model. At the highest energies, the data just below the
GDZ cutoff is almost perfectly Boltzmann-Gibbsian suggesting a strong association
with cosmic ray source physics.

Figure 4.: Regions of interest in the cosmic ray energy spectrum demarcated by this
work into solar and high energy cosmic ray source regions and NESM propagation
regions: 1=solar cosmic ray source and modulation region (q0), 2=anomalous NESM
(galactic) propagation region (q1), 3=anomalous NESM (extragalactic) propagation re-
gion (q2), 4=cosmic ray source region (q3).



Towards a Unified Source-Propagation Model of Cosmic Rays 103

solution, although mathematically difficult to obtain, is expressable in terms of sim-
ple hypergeometric series. The solution incorporates both the (Boltzmann-Gibbsian)
physics of high energy source cosmic rays, their mediation through various regions and
their modulation by solar cosmic rays in our own space neighbourhood suggesting a
potentially new interpretation of the cosmic ray energy spectrum.
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