
Astronomical Data Analysis Software and Systems XX
ASP Conference Series, Vol. 442
Ian N. Evans, Alberto Accomazzi, Douglas J. Mink, and Arnold H. Rots, eds.
c©2011 Astronomical Society of the Pacific

drPACS: A Simple UNIX Execution Pipeline

Peter Teuben

Astronomy Department, University of Maryland

Abstract. We describe a very simple yet flexible and effective pipeliner for UNIX
commands. It creates a Makefile to define a set of serially dependent commands. The
commands in the pipeline share a common set of parameters by which they can com-
municate. Commands must follow a simple convention to retrieve and store parame-
ters. Pipeline parameters can optionally be made persistent across multiple runs of the
pipeline. Tools were added to simplify running a large series of pipelines, which can
then also be run in parallel.

1. Introduction

Pipelines are in common use at large observatory data centers, but are very sophisti-
cated (e.g. Ballester et al. 2011) and often overkill, or simply beyond the patience or
skills, of many casual users. Yet, many theoretical or observational projects could very
well benefit from this concept of being able to pipeline their dataflow. Often they are an
afterthought in small-scale projects. If some effort is taken to pipeline these, the thresh-
old to experiment is lowered, opening the way to more insight. This paper introduces
such a concept.

Imagine a series of programs that run a simulation and/or reduce data. If you
have made it flexible, it will also have parameters to control this process. But now
imagine you have to run many of these pipelines, each on a different set of data (ideally
in a different directory) and potentially have to re-run them when something in your
pipeline has changed. For example if one of the programs in your pipeline had a bug,
or you add or insert steps into the pipeline. You will have to rerun portions of your
pipeline for all your directories.

I will describe a generic UNIX solution to this dilemma, to make this process easy.
We have used this pipeline in CARMA for PACS data reduction, as well as converted
an existing CARMA data reduction pipeline for the STING project. We maintain a
website where more information can be found where to download and install the code
from.1

1http://carma.astro.umd.edu/tools/drpacs

533

534 Teuben

2. Overview

2.1. Concepts

For our purposes a pipeline consists of a serial set of programs controlled by a common
pool of parameters that these programs can read and write. These programs can be
shell scripts, Python scripts, compiled programs or anything that you would normally
run from the command line. Normally a pipeline is run in a project (or run) directory.

2.2. Define and Run the Pipeline

First the pipeline needs to be defined, by providing it the names of the programs that
need to run in a certain sequence that we call the pipeline. The simplest way this can
be done is by providing them via the command line to the pipeline program. Our
example starts with 5 program steps, named step1 through step5:

pipeline 5 step1 step2 step3 step4 step5 > Pipefile

Next, you would probably want to set the values for some of the parameters for the
various programs in the pipe. The pipeline programs will have to read them through
provided procedures:

pipepar -c project=c0184.3B_108PG2130.13 carmaRefant=2

and finally you can run the pipeline in one of many ways. For example:

pipe all

pipe step3 all

pipe clean all

would run the whole pipeline (or formally whatever needed to be done), would only run
step3 and then the remainder of the pipeline, and in the third example clean the pipe
from the start and then run the whole pipeline again.

2.3. Advanced Usage

Now imagine for all your runs (directories) you would need to re-run the pipeline with
a new parameter in step3. Thus step1 and step2 do not need to be run again. The
piperun command can do this in a single line as follows:

piperun dirs.txt ’pipepar foo=1.3 ; pipe step3 all’

Essentially this will execute the second argument, the text between the singles quotes,
in each directory listed in the text file dirs.txt provided as the first argument to
piperun.

Now imagine that each pipeline computed two interesting numbers, foo and bar,
and these were stored in the pipeline parameter database. To produce a simple ascii
table of these two variables, which can be used for further analyis, you would issue

piperun dirs.txt pipepar -v foo -v bar > foo_bar.tab

drPACS Pipeline 535

where the file foo bar.tab contains two columns with the (textual) values as they
were stored in the parameter database.

Finally, another useful feature of drpacs is the option to save the parameters for
a particular “project”. This is useful in case the run directory is a scratch directory.
The parameter database, which is normally local, will need to be saved, which drpacs
will do based on it’s project name. Assuming this had been done, a new project can be
created from scratch as follows:

pipesetup a=1 b=2 project=test123

and

pipe all

and

pipesave

would save the parameter set based on its project name “test123”.

2.4. Examples

We show two simple examples of scripts that will be drpacs compliant, i.e. will read
parameters from drpacs first, and then the command line, and also save them at the
end. A C-shell example:

#! /bin/csh -f

#

(1) define default values in case not given, problem specific

set a=1

set b=2

(2) pipeline interface to grab old defaults, drpacs compliant

pipepar -s csh > tmp$$.par; source tmp$$.par; rm tmp$$.par

(3) poor man’s command line processor to override parameters

foreach _arg ($*)

set $_arg

end

(4) The Actual Code where the work can be done, all problem

specific

echo A=$a B=$b

(5) write pipeline parameters back, drpacs compliant

pipepar a=$a b=$b c=3

and a python example:

#! /bin/env python

#

import parfile, sys

a=1

b=2

if __name__ == "__main__":

p = parfile.Parfile(’drpacs.def’)

536 Teuben

p.argv(sys.argv)

p.set(’a’,a)

if p.has(’b’):

b = p.get(’b’)

else:

p.set(’b’,b)

p.set(’sum’,a+b)

p.save()

for which you will need the parfile module, a simple keyval pair module supplied
with the drpacs code. Several more advanced ones are on the market and can be used
as effectively. For example configobj, the one that STScI’s pytools.teal uses
(C. Sontag, private communication).

2.5. Drawbacks

Simplicity and the usage of the UNIX make program under the hood also comes with a
price.

First of all, you can only run one pipeline in a given directory. This is not a serious
handicap, as the pipelines are easily redefined from a textfile, so a set of Pipefile’s
could be stored locally. However, the status of each pipeline (e.g. which step was last
correctly executed) will be lost. Only the active one will be valid, and switching from
one to the other has to be done with care. Parameters between pipelines will have to be
shared, there is no namespace.

Secondly, the current version has no dependency on the keywords in the pipeline.
For example, if one would change a parameter that is normally defined in step3, the
user would need to know this parameter came from step3 and re-execute the pipeline
from this step onwards. In principle these dependancies can be coded quite easily via
“make” dependancies, in a similar way how the program steps have been coded, but
this has not been implemented in the current version.

For each “project” we assume a “directory”, although the hierarchy is not speci-
fied.

One cannot use the same program twice in the pipeline.

Acknowledgments. The author wishes to thank Ashley Zauderer, Dalton Wu and
Roger Curley for their help during the develpment of drpacs.

References

Ballester, P., Bramich, D., Forchi, V., Freudling, W., Garcia-Dabó, C. E., Gebbinck, M. K.,
Modigliani, A., & Romaniello, M. 2011, in Astronomical Data Analysis Software and
Systems XX, edited by I. N. Evans, A. Accomazzi, D. J. Mink, & A. H. Rots (San
Francisco, CA: ASP), vol. 442 of ASP Conf. Ser., 261

