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Abstract. Sparse modeling is widely used in image processing, signal processing,
and machine learning recently. Thanks to the research and progress in statistical math-
ematics along with the evolution of computational power, the technique is applicable
to the radio imaging for the data obtained with the ALMA (Atacama Large Millimeter-
submillimeter Array). We’ve developed a new imaging tool based on the sparse mod-
eling approach and it was experimentally implemented on the Common Astronomy
Software Application (CASA) which is an official reduction software for the ALMA
data. However, if the image size is large, e.g., 1K x 1K pixels, the data processing time
gets longer, say several to ten hours, even with the latest mid-range server computers.
Here we present a possible measure to greatly reduce the processing time.

1. Introduction

Radio interferometric imaging using the sparse modeling approach was originally de-
veloped for VLBI (Very Long Baseline Interferometry) observation data (Honma et al.
2014). Several simulated data were used to evaluate the method for years (Kuramochi
et al. 2018). To automatically determine the most realistic solution from the infi-
nite number of possible solutions, the cross-validation (CV) technique was introduced
(Akiyama et al. 2017). We’ve developed a new interferometric imaging tool Python
module for Radio Interferometry Imaging with Sparse Modeling (PRIISM, Nakazato
et al. 2019) implemented on CASA, a standard data reduction application for ALMA
data.

However, the new imaging technique with sparse modeling is computationally
intense even for the latest CPUs. Furthermore, the CV process requires an order of
magnitude more calculations. Reduction of its processing time is essential to utilize the
technique with real ALMA data.

2. Process Overview

The most statistically realistic image can be derived by solving the following formula
with the iterative process.

x = argmin[‖v − F(x)‖2 + λ1‖x‖ + λTS VTS V(x)] (1)
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subject to x ≥ 0, where x is image, v is visibility, F() is Fourier transform, TS V() is
Total Square Variation function. Two regularization parameters λ1 and λTS V control
sparseness and smoothness, respectively. The equation can be solved iteratively, and
the calculation is terminated when the image is converged. For each λ1 and λTS V , we
run the CV process to find the best probable (λ1, λTS V ) combination (Figure 1).

Figure 1. Sample chart resulting from the CV process. In this case, numerical
values of 10−2, 100, 102, 104, and 106 were assigned to λ1 and λTS V , and equation (1)
was solved iteratively for every (λ1, λTS V ) combination. The most probable image
can be obtained with λ1 = 102 and λTS V = 104 (red square).

3. What’s the Cross-Validation (CV) Process?

To choose the best probable regularization parameters λ1 and λTS V , the CV process is
introduced. In the CV process, visibility data is first divided into N (say 10) groups
(N-fold CV), and then the process is run with N-1 groups of data (training set) to find
a solution. We then apply the solution to the rest of the group (validation set) and
calculate the deviation from the fit. The process is repeated with every combination of
data groups; that means the process is repeated N times. Finally, we average all the
deviation values derived by the process above. The smaller the averaged deviation is,
the better the solution is presumed to be.

For every (λ1, λTS V ) combination, the whole CV process above is applied to de-
termine the best λ1 and λTS V , namely choose the combination of having the lowest
averaged deviation. λ1 = 102 and λTS V = 104 was selected in Figure 1 (in a red square
frame). As one can imagine, this is really a CPU intensive process.

4. How to Accelerate the Process

Solving equation (1) is an iterative process. The resulting image is improved and con-
verged gradually. Figure 2 shows how the image gets converged as the iteration in-
creases. If the iteration cycle can be terminated earlier, the shorter the processing time
goes. As is seen in Figure 2, the image is converged rapidly even in early cycles, and
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Figure 2. Image convergence curves for every (λ1, λTS V ) combination. The ver-
tical axis represents the convergence: difference of the cost (in the square bracket
of the right side of equation (1)) between adjacent iteration cycles. The lower the
difference of the cost is, the more the image is converged. The horizontal axis shows
the number of iteration cycles with a logarithmic scale.

Figure 3. The most probable (λ1, λTS V ) combination derived from the CV process
was plotted by changing the iteration cycle from 100 to 10000. From top to bottom,
spatial resolution was changed from 0.03 to 0.24 arcsec/pixel. From right to left,
size of the image was changed from 64x64 to 1024x1024. Ovals represent the CV
result at a certain number of iteration cycles: largest Oval for 100, next largest oval
for 300, middle sized oval for 1000, smaller oval for 3000, and the smallest oval
for 10000 iterations. Numbers put on each boxes are image size (pixel), spatial
resolution (arcsec/pixel), number of data on the uv-plane, and filling factor of the
uv-plane, respectively.
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Figure 4. CV process with different iteration cycles: from left to right, 100, 300,
1000, 3000, and 10000 iterations, respectively. The vertical axis and the horizontal
axis for each chart indicate λ1 and λTS V , respectively.

in some cases it rebounds and oscillates in later cycles. But in general, the curve shows
decreasing trend globally.

Figure 3 shows how the derived most probable λ1 and λTS V are moved as the
number of iteration cycle increases. In most cases, only small changes can be seen
even if the iteration cycle is increased, and therefore, 100 iteration cycles is barely
acceptable. For more safety, 300 or 1000 iteration cycles is enough for rough estimation
of λ1 and λTS V in the CV process.

Resulting charts from the CV process with different iteration cycles are shown in
Figure 4. Most probable (λ1, λTS V ) combinations selected by the CV process were
independent of the number of iteration cycles and identical in this case. The processing
time was 29, 85, 279, 820, and 2740 sec for 100, 300, 1000, 3000, and 10000 iteration
cycles, respectively. The iteration process was stopped when the difference of the cost
between two adjacent cycles became smaller than a certain threshold value. Since the
threshold is arbitrarily set, the value tends to be smaller so as to continue the iteration
process until the image is fully converged. It requires a long time. However, if we
split the whole process into two, namely, a light weighted CV process (small iteration
cycle) only to determine the regularization parameters (λ1, λTS V ) combination and the
final imaging iteration process (until the image is fully converged) with the derived
parameter set (λ1, λTS V ), the whole processing time is greatly reduced. That is one of
the practical solutions to accelerate the interferometric imaging process using PRIISM.
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