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Abstract. We study how the frequency spectrum of the background isotropic monopole
emission is modified and transferred to higher multipoles by boosting effects due to
the observer peculiar motion. The method, based on a linear system, is suitable for
various background radiation models and here applied to several types of cosmic mi-
crowave background (CMB) distorted photon distribution functions and extragalactic
background signals superimposed onto the CMB Planckian spectrum, spanning the
range between the radio and the far-infrared (far-IR). We derive explicit solutions for
the spherical harmonic coefficients up to any desired multipole, ¢i,.x, in terms of linear
combinations of the signals at just N = £, + 1 colatitudes. For appropriate choices
of these colatitudes, the symmetry property of the associated Legendre polynomials
with respect to /2 allows the separation of the system into two subsystems, one for
¢ = 0 and even multipoles and the other for odd multipoles, and improves the solution
accuracy. The simplicity and efficiency of this method can significantly reduce the com-
putational cost needed for accurate predictions on the whole sky and for the scientific
analysis of data from future projects. Moreover, in the presence of CMB spectral distor-
tions, this formalism, combined with the representation of CMB intrinsic anisotropies,
provides a new test to constrain the intrinsic dipole embedded in the kinematic dipole.

1. Introduction

We study how the frequency spectrum of the background isotropic monopole emission
is modified and transferred to higher multipoles by boosting effects due to the observer
peculiar motion. The proposed method is suitable for various background radiation
models and here applied to several types of cosmic microwave background (CMB)
distorted photon distribution functions and extragalactic background signals superim-
posed onto the CMB Planckian spectrum, from the radio to the far-infrared (far-IR).
Its simplicity and efficiency significantly reduces the computational cost needed to per-
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form predictions that are accurate enough for applications to scientific analyses of data
derived from projects that could be realised even in the very distant future.

2. Framework and formalism

The peculiar velocity effect on the frequency spectrum can be evaluated on the whole
sky using the complete description of the Compton-Getting effect (Forman 1970), based
on the Lorentz invariance of the photon distribution function, n(v). In equivalent ther-
modynamic temperature, Ty, (v) = (hv/k)/In(1 + 1/n(v)), the signal observed at the
frequency v is

TtllSIB/dISt(V, np) = xTo _ . o
In(1 + 1/(n(v, i, ))BB/dist)
where n(v, i1, ﬁ) =n() withv' = v(1 —ﬁ-ﬁ) /(1=B*'/2 i is the sky direction unit vector,
,[37 = V/c is the observer velocity, x = hv/(kT,) and T, = To(1 + z) are the redshift in-
variant dimensionless frequency and the redshift dependent effective temperature of the
CMB, and ‘BB/dist’ stands for a blackbody spectrum or for any type of non-blackbody
signal (Burigana et al. 2018). We expand Eq. (1) in spherical harmonics:
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Adopting a reference system with the z axis parallel to the observer velocity, the depen-
dence on the colatitude 6 remains, while that on the longitude ¢ disappears: thus, only
the spherical harmonic coefficients ag (v, ) with m = 0 do not vanish. The amplitude
of aro(v,8) decreases as 87 at increasing multipole, £, with p ~ 1 (for a blackbody
p = 1 and ago(v, ) does not depend on v). Adopting a certain {p,x in Eq. (2) and
computing the signal Tt?lB/ dist through Eq. (1) in N = {nax + 1 sky directions, we can
write a system of N linear equations, defined by Eq. (2) with m = 0, in the N unknowns
aeo(v,). Since f ~ 1.2336 X 1073 (Planck Collaboration 2020), choosing {max = 6
allow us to achieve a high numerical accuracy. Furthermore, for appropriate choices
of the N colatitudes 6;, the symmetry property of the associated Legendre polynomi-
als with respect to m/2 allows the separation of the system into two subsystems, one
for £ = 0 and even multipoles and the other for odd multipoles. This improves the sys-
tem solution accuracy, since the mean error from neglecting higher ¢’s comes only from
Cmax +2 for even € (or from £, +1 for odd €) (Trombetti et al. 2020). Similar considera-
tions hold for different £,,,x. For £,.x = 6 we select 8; = 0, /4, /3, 7/2,(2/3)x, (3/4)~,
and & to simplify the algebra. The two subsystems can be simply solved with the meth-
ods of elimination and substitution. For any type of background spectrum, the solution
for each ag,,(v, ) is a linear combination of sums and differences of the signals from
Eq. (1) at the N colatitudes (Trombetti et al. 2020), namely of:

( BB/dlst(e 0) + BB/dlst(e _ 71')), (Ttlle/dist( n/4) + TBB/dlst(e _ (3/4)71.))’

(TP = 7/3) + TP '™ (0 = (2/3)m)), and Tp» (0 = 7/2) for € = 0 and even
multlpoles and of
( BB/dmt(e 0) BB/dlst(g — )), ( BB/dlst(e — /4) BB/dlst(g — (3/4)71_))7

and ( BB/dlst(e = 1/3)— BB/ distig = (2 /3)77)) for odd multipoles.
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The weights of the signals at the N colatitudes appearing in the solutions show re-
markable analogies with the weights for the centred approximation numerical deriva-
tive scheme (Fornberg 1988), except the sign alternation because of a mixing of the
derivatives entering the problem. This is in principle expected since the solutions at in-
creasing ¢ are tightly related to the derivatives of n(v) up to the corresponding increasing
order, as first pointed out in Danese & De Zotti (1981) for the dipole.
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Figure 1.  Results for ¢ from 1 to 4 for different models. Thick (or thin) lines cor-
respond to positive (or negative) values of Aago(v,5), except for the 21cm redshifted
line where the sign of Aay (v, ) is given by the colour. Top (low frequencies): CMB
non-equilibrium distortion; radio background from extragalactic sources; 21cm red-
shifted line. Middle (low and high frequencies): CMB Comptonization plus free-free
distortion; CMB Bose-Einstein like distortion. Bottom (high frequencies): cosmic
infrared background; millimetre background from extragalactic sources.

3. Results

We apply the described method to a blackbody spectrum at temperature 7y = 2.72548 K
and a variety of analytical and semi-analytical models for CMB spectral distortions and
extragalactic signals, computing the coefficients a,o(v,8) for € from 0 to {max = 6, i.e.
for the monopole, dipole, and beyond as in principle measured by a moving observer,
assuming for simplicity the almost constant Solar System barycentre velocity. In Fig. 1
we present some results in terms of the square of the difference, Aaso(v,), of the
aeo(v, ) for the considered signal and for the blackbody, which is equivalent to the
angular power spectrum C, of the difference of the corresponding maps (see Trombetti
et al. (2020) for further details).

Having evaluated the ag (v, 8) coeflicients, it is direct to simulate the all-sky map
using Eq. (2) in any reference system. In Fig. 2 we show, in Mollweide projection, the
maps for three models minus the map from the blackbody in the reference system with
the z axis parallel to the observer velocity (for £ = 3, left) and in Galactic coordinates
(for ¢ = 3, middle, and for £ = 6, right). In each case, the map is displayed at a
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Figure 2.  Top: CMB Bose-Einstein like distortion. Middle: CMB Comptoniza-
tion alone. Bottom: cosmic infrared background. Given its efficiency, the method can
easily include the observer motion around the Sun, as combination of maps, each one
with almost constant observer velocity: a modulation with an amplitude of ~ 8 % of
the signal and related to the observational strategy is then superimposed onto the
longitudinally invariant pattern visible on the left. See Trombetti et al. (2020) for
further details. The use of HEALPix (Gérski et al. 2005) is acknowledged.

frequency where the imprint of the model is weak, to show the accuracy of the method
even for very tiny signals.

4. Constraining the CMB intrinsic dipole

Remarkably, in the presence of spectral distortions, the a, (v, 8) due to the observer
motion have specific frequency dependencies that, while for a generic choice of the ref-

erence system are polluted to different m’s, for the z axis parallel to ﬁ obviously appear
only at m = 0. Intrinsic temperature anisotropies have frequency independent spherical
harmonic coefficients, while intrinsic distortion parameters anisotropies depend on v
in a way physically coupled to that of the ag,,(v,5). Thus, in the presence of spectral
distortions, except for a degeneracy between the intrinsic temperature anisotropies and
peculiar motion induced anisotropies at £ = 1 and m = 0, the above different behaviours
can be analysed in future CMB surveys to constrain, from the other two m modes, the
power, C, of the intrinsic dipole embedded in the kinematic dipole (Trombetti et al.
2020), with implications for inflationary models, universe geometry, and topology.
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