Astronomical Data Anealysis Software and Systems VI
ASP Conference Series, Vol. 125, 1997
Gareth Hunt and H. E. Payne, eds.

Interactive Data Analysis Environments BoF Session

Joseph Harrington and Paul E. Barrett

Codes 693 and 660, NASA Goddard Space Flight Center, Greenbelt, MD
20771-0001

Abstract. We conducted a discussion of interactive environments in
which scientists handle data. Traditional astronomical packages (AIPS,
IDL, IRAF, MIDAS, etc.) lack many modern language and interactive
features, whereas modern interactive/scripting/rapid prototyping envi-
ronments (Perl, Tcl, etc.) lack convenient and efficient numerical capa-
bility and a way to access existing astronomical code. Our focus was thus
on how best to merge the capabilities of modern environments with as-
tronomical data processing. To follow developments in this evolving field,
we have set up a Web page that compares the available environments.

1. Introduction

Even with the data-volume explosion of modern astronomy, desktop computers
can easily keep pace with the calculations we require of them. However, our
workstations do not themselves know what calculations must be performed. De-
veloping an analysis approach generally takes an individual astronomer much
longer than the observations and calculations themselves. Reducing this bot-
tleneck should therefore be a high priority. In recent years the community of
programmers on the Internet has created interactive environments that accel-
erate the development of data handling software. Although these systems are
often extremely powerful and flexible, they tend to have better support for tex-
tual data manipulation than for the numerical calculation and image display that
astronomers need. Most astronomical environments, rich in task-specific pack-
ages of routines and capable of the necessary numerics, were written long before
the advances in interactive environments and feel cumbersome when compared
to the newer systems. The need for individual astronomers to handle larger and
more complex data sets continues to grow, so it is time to bring the state of the
art in interactive environments to astronomy.

We conducted a Birds-of-a-Feather (BoF) discussion about interactive en-
vironments for handling astronomical data. Representatives from environments
both within and from outside of astronomy formed a panel that took audience
questions. Panel members were Brian Glendenning for Glish/AIPS++, Wayne
Landsman for IDL, Michael Fitzpatrick for IRAF, Arnold Rots for Khoros, Klaus
Banse for MIDAS, Lee Rottler for Python, and Nicholas Elias for Tcl. We
wanted to find out what the community wanted in an interactive environment,
and how it felt about certain specific issues. We also wanted to inform the com-
munity of the possibilities now available with state-of-the-art systems outside
of astronomy. The BoF ran for 90 minutes and maintained an attendance of
about 50 participants, with some flux into and out of the room. The range of

69

© Astronomical Society of the Pacific *« Provided by the NASA Astrophysics Data System



70 Harrington and Barrett

expertise in the audience was large, so the discussion was punctuated by a num-
ber of well-made points rather than an approach to consensus or disagreement.
In this article we will focus on the points made during the discussion. Length
restrictions preclude making a detailed case for a change in astronomical data
environments or for discussing specific systems.

2. Context: Our Investment in Software

The task of bringing modern language and interactive capability to astronomical
data analysis is difficult for two reasons. First, the developments in computing
range from standardized command-line interfaces to network-transparent inter-
process communication. We need to find out what capabilities are available,
which are most important to researchers, and what the relative difficulties of
implementation may be. Second, we cannot afford to abandon or manually con-
vert the huge quantity of code we currently use. We will not likely agree on a
single environment, yet we will want to be able to use each others’ code more
than we can now. Any solution we choose must not leave us in a position to
suffer from the same problem again in the future.

Our discussion focuses on languages and interactive environments, but we
must always keep a larger, second problem in mind: We desire a solution that
accommodates the simultaneous use of multiple languages and allows for easy
transition from one to the next as languages evolve. One possibility is the
“Gaming Table” concept of Noordam & Deich (1995), Noordam (1997). Similar
strategies are currently under consideration by several of the major astronomical
packages, most notably AIPS++. Any system that is not capable of using code
written in other languages (particularly compiled languages), or of being run by
code written in other systems, is a bad, short-term investment.

.3. Ideas from the Discussion

Key features of the interactive environment include command-line editors (stan-
dards like GNU Readline are not yet supported by the astronomical packages),
real-time numerical efficiency, debuggers, and graphics display. Scripting lan-
guage issues include friendly syntax, fast learning curve, good array notation,
and access to compiled code and code written in other scripting languages.
Although they are different concepts, the issues of interactive environments
and scripting languages are tied together. A script may have been prepared
in advance and developed with a plan, or it may evolve as the user thinks
of things and types them. Whereas a script file is read monotonically from
beginning to end, an interactive user may need to abandon a train of thought,
backtrack, correct errors, etc. Interactive users are more efficient when they can
re-use portions of earlier commands, when they can call up information such as
documentation, when they type to standard interfaces, and when their overall
typing burden is reduced. The author of a non-interactive script (one contained
in a file) can select the editing environment to suit personal taste and is usually
much less concerned about extra typing than an interactive user. For example,
many non-interactive languages (such as C or Perl) use semicolons to signal the
end of a line. Signaling the end of an interactive line with anything more than a
return is a nuisance. Likewise, non-interactive function calls often have the form

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System



Interactive Data Analysis Environments BOF Session 71

function(argl, arg2, ...). The most common interactive environments (such
as the shells) dispense with the parentheses and commas and just use spaces
as delimiters. There are many reasons to desire the interactive and scripting
languages to be the same, but the best interactive syntax may be very different
from the best script syntax. Flexible systems, like IRAF cl, allow both styles.

Language syntax was a contentious area. Individuals preferred different
styles and were unwilling to agree on a single language. Some were not willing
to learn a new language unless there was overwhelming reason to do so. Some
liked object-oriented languages, others thought that a waste of time, at least for
scripting. Some were picky about the exact style of a language’s syntax, others
said they could adapt to anything without much cost.

A strong appeal of analysis languages like IDL and Python is the ability
to manipulate arrays simply. If a and b are arrays, then c=a*b multiplies cor-
responding elements of a and b and b=a[20:30,19:29] extracts a sub-array
from a. This “syntactic sugar” makes the code much easier to read and write
than function calls or explicit loops. Furthermore, the operation runs at ma-
chine speed, making it practical to reduce large datasets using an interpreted
language. However, complicated expressions like a = b x (c+d/2)® are done as a
series of simpler whole-array operations. Modern compilers can take advantage
of machine instructions that optimize such expressions, passing the data through
the CPU only once. We hope to see interpreters that do this soon.

Those who value rapid prototyping (quickly developing scripts that do a
job well, then converting them to a compiled language that runs fast) prefer a
la.nguage that is as close as possible to the ultimate compiled language, but that
is interactive, doesn’t have declarations, has conveniences like array operations in
the syntax, etc Some thought that resea.rchers should want to write something
quickly in a high-level system and have it run reasonably well without further
work. They felt rapid prototyping was for production work, not research.

As soon as each new system arrives, people reinvent a lot of code, such as a
FITS file processor. This is a foolish waste of time. We should be learning how
to work between languages, and spend our valuable time writing new code.

The point was made that if a large project chooses a proprietary system
for its basic calibration environment, it makes access to their project much
more difficult and/or costly to data customers who do not have licenses for that
particular product. Likewise, the project places its investment in coding at risk
should the provider of that product cease to support it or cease to exist. ISO was
cited as having committed this error in choosing IDL. Basing work on packages
distributed under the GNU General Public License assures access for anyone.

No one (not even panelists) claimed to prefer the interactive environments
of existing astronomical systems over the modern languages. However, the finan-
cial constraints on the programming groups (particularly IRAF) that support
these packages are very tight and programming teams are small—usually much
fewer than five people. Their home institutions generally hold the development
of new application code for that institution as highest priority, regardless of the
desires of the programming group and the community at large (even if grant
money supports the project). Thus, a replacement of the IRAF cl is unlikely
anytime soon, at least from NOAQO. The command line interpreters for astro-
nomical environments were designed for a special purpose, and not as general
programming languages. One panelist suggested that given the opportunity to
redesign the command line shell, they would choose a more modern design or

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System



72 Harrington and Barrett

even an existing general purpose language. This is the route chosen by the
AIPS++ group, who use Glish.

Some groups are making their systems’ core routines available in C or FOR-
TRAN libraries. This would allow compiled code and interactive languages with
dynamic linking capability to use those routines. However, it may be some time
before all the applications of a given system are available in this way. Some limi-
tations of the system designs, like storing arrays in disk files rather than memory,
may make linking against these packages’ routines from external programs less
attractive to those who demand efficiency.

The major analysis environments strongly influence the work of many peo-
ple, but rarely do their prospective users have the opportunity to influence the
product during the critical design and development stages. These projects are
community investments, and there is much expertise to be gained from the
community. We encourage developers to hold open design reviews and to take
seriously the comments they receive.

4. Conclusions

The list of desirable features is long, and we are told that modernizing old
systems is unlikely. However, several of the new languages (including Glish,
GUILE, Perl, and Python) have, or are gaining, the numerical features needed for
data analysis. What remains to be provided are the means to connect languages
to each other and to existing code, and we can expect to see some experimental
systems here soon. In the mean time, we should develop our new code with an
eye toward the future. Codes requiring top efficiency or guaranteed longevity are
best written in compiled languages. Modularity will pay off because tools such
as SWIG! will read application source code and automatically generate wrapper
scripts that make the routines available to a number of interactive languages.
This means the programmer need not write a main routine or graphical user
interface, since the interactive languages provide them.

Because this is a fast-developing situation, we have created a WWW site?
that compares many systems. Each has an entry in a feature comparison table,
a textual description, and links to relevant sites. Several have programming
examples that were prepared by the BoF panelists. We welcome additions and
corrections.

References

Noordam, J. E., & Deich, W. T. 1996, in ASP Conf. Ser., Vol. 101, Astronomical
Data Analysis Software and Systems V, ed. G. H. Jacoby & J. Barnes
(San Francisco: ASP), 229

Noordam, J. 1997, this volume, 73

Lhttp://www.cs.utah.edu/~Ebeazley /SWIG /swig.html
2http://Iheawww.gsfc.nasa.gov/users/barrett/IDAE/table.1.html

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System



