Astronomical Data Analysis Software and Systems IX
ASP Conference Series, Vol. 216, 2000
N. Manset, C. Veillet, and D. Crabtree, eds.

A Python-based IRAF Task Parameter Editor

M. D. De La Pena
Space Telescope Science Institute, Baltimore, MD 21218

Abstract. As part of the development of a new Python-based CL for
IRAF tasks by the Science Software Group at STScl, we have developed
a GUI-based parameter editor for IRAF tasks using Tkinter. This new
parameter editor is intended to provide the equivalent functionality of the
IRAF EPAR task, but to make parameter editing easier by using appro-
priate user interface elements, such as menu choice lists, action buttons,
and file browsers. This paper describes the design and functionality of
the parameter editor as well as planned enhancements.

1. Why a GUI Parameter Editor?

A well-designed GUTI uses readily recognizable visual cues to help the user navi-
gate efficiently through information. Additional functionality can be provided in
hidden menus or separate views which can be invoked as needed so as to keep the
main view streamlined and uncluttered. A GUI is able to make effective use of
interfaces as appropriate to the type of values being displayed (e.g., drop-down
menu for a choice list, or radio buttons for boolean options) while exploiting
widely-used, modern-day technology (e.g., X11 Window System). Fundamen-
tally, a GUI presents a view which is both aesthetic and functional to the user.

2. The Challenge

The challenge in creating a GUI parameter editor for IRAF is that by its very
function, the editor becomes a GUI for all tasks in the system. Ideally, a GUI
is designed as an integral part of an application, and therefore, it is able to
present tailored views to the user with respect to combinations of input options.
Through these customized views, the user can access the task very efficiently.
Unfortunately, the only information available to the GUI-based parameter editor
in the IRAF system are basic characteristics describing the parameters (e.g.,
data types, default values); there is no information available with respect to the
relationship between parameters.

3. The Solution

The Python/Tkinter GUI-based IRAF task parameter editor is being designed
to provide not only equivalent functionality to that available in the IRAF EPAR,
but also to extend the capabilities of the task. Figure 1 presents an illustration

63

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System

64 De La Pena

of the prototype Python parameter editor interface. The top of the view lists
the package and task names and contains the fundamental action buttons. In-
formation regarding the meaning of an action button is obtained by placing the
cursor over the button; the explanatory text appears in the narrow status bar lo-
cated at the bottom of the application window. A scrolling canvas of parameter
attributes (name, value input widget, and prompt string) occupies the majority
of the view and is the main interaction region. This GUI-based IRAF task pa-
rameter editor is an integrated part of the new Python-based CL for IRAF tasks
which is being developed by the Science Software Group at STScl (Greenfield
& White 2000). ,

While the majority of the action buttons are self-explanatory, it should be
noted that the WINDOW and HELP buttons work in conjunction with one an-
other. The user has the choice of displaying the IRAF help pages in either a
browser or in another window. The browser option invokes the HTML help sys-
tem developed at STScl. The WINDOW option simply displays the IRAF help
pages in another window accompanying the parameter editor. The WINDOW
menu button at the top right allows the user to choose the preferred display
with the button label reflecting the user’s current choice.

4. The Interactive Canvas in Detail

The parameter canvas contains the widgets which allow the user to modify pa-
rameter values. Each parameter employs a widget which is most appropriate to
the type of data required from the user. Table 1 is a summary of the parameters
and corresponding widgets.

Table 1. Correspondence of parameter types and widget representations.

Parameter Type Widget
Boolean Radiobutton
Choice list (of any data type) Menubutton/Menu
String Entry box
Numeric value Entry box
PSET Button/New Edit Window

In order to keep the main GUI simple, additional functionality is invoked
through the use of the action buttons or use of the right-most button on a
mouse in string entry fields. Pressing the right-most button on a mouse while
within a string entry box generates a pop-up menu with the options to: invoke
a file browser, clear the entry box, or to “unlearn” the specific parameter value.
Clearing the entry box removes the current value in the entry. “Unlearning” the
entry restores the initial default value for this specific entry only. Invoking the
file browser starts up an independent window which allows the user to examine
the directory structure.

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System

A Python-based IRAF Task Parameter Editor

List of aperture profile mages
Run task interactively ?
Find apertures?
Recenter apertures?
4 Yes . No Resize apertures?
4 Yes -, No Edit apertures?
4 Yes «, No Trace apertures?
® Yes \, No Fit the traced points interactively ?
4 Yes , No Extract spectra?
4+ Yes , No Extract sky, sigma, etc.?
v Yes 4 No Review extractions?
fine 560 Dispersion ne
nsum 20 Number of dispersion knes to sum or median

DEFAULT APERTURE PARAMETERS

lower -5.0 Lower aperture Emit relative to center
upper 5.0 Upper aperture Bmit relative to center
apidtable Aperture 1D table (optional)

DEFAULT BACKGROUND PARAMETERS

b_function | chebyshev Background function
b_order : Background functicn order
b_sampie Background sample regions
b_naverage Background average or median
b_niterate y Background rejection iterations
b_low_reject |3.0 Background lower rejection sigma
b_high_reject {3.0 Background upper rejection sigma

b_grow jo0 Background rejection growing radius

Figure 1. The GUI-based Python/Tkinter IRAF task parameter ed-
itor. In this figure the pop-up menu for the “profiles” parameter is
deployed. The pop-up menu was invoked by pressing the right-most
button on a mouse while in the entry field of the “profiles” parameter.
This figure also shows a choice list implemented as a drop-down menu
which is deployed for the “b_function” parameter. Once the function is
chosen, the corresponding button label will be updated with the func-
tion name. The remaining parameters on this canvas require numeric
input values in the entry box or are represented as radio buttons for
the boolean option.

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System

65

66 De La Pena

After numeric data has been entered, contemporaneous entry checking is
done by pressing the Return key. Regardless, entry checking is done for numeric
data when explicitly saving the parameter values (via the SAVE button) or by
executing the task (via the EXECUTE button). Any associated error messages
are displayed in the status bar at the bottom of the application window. The
PSET is an action button that invokes a new edit window which is displayed
in conjunction with the main view. While supplementary visual cues must be
implemented to minimize confusion, it is intended for the task to have multiple
windows visible and active concurrently.

5. Future Plans

The immediate future plans for the GUI parameter editor are to implement
equivalent functionality to that which is currently available in IRAF EPAR. At
the least this requires implementation of: the ability to tab from entry to entry
via the RETURN key, supplement the menu options by allowing string entry
with minimum match completion, and acquiring parameter values from alternate
PSETS. However, the GUI medium inherently has more capabilities which will
be exploited for the convenience of the users. One of the most useful of these
planned capabilities is a customized directory browser which will incorporate
an internal file browser. For FITS files, it is particularly useful to be able to
examine the FITS headers of particular extensions in order to choose the proper
data.

References

Greenfield, P. & White, R. 2000, this volume, 59

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System

