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Abstract. The problem of finding critical points of the distance function
between two keplerian elliptic orbits (hence finding distance between them in a
sense of set theory) is reduced to determination of all real roots of a trigonometric
polynomial of degree eight (Kholshevhikov & Vassiliev 1999). A polynomial of
smaller degree with such properties does not exist in non-degenerate cases. Here
we extend the results to all 9 cases of conic section ordered pairs. Note, that
ellipse–hyperbola and hyperbola–ellipse cases are not equivalent as we exclude
the variable marking the position on the second curve.

1. Introduction

The problem of finding a distance between two arbitrary Keplerian ellipses E, E ′

(in a sense of set theory—the minimal distance between two points lying on E,
E′) emerged four centuries ago together with discovery of Keplerian laws. An
optimal solution was found in the paper (Kholshevhikov & Vassiliev 1999), con-
taining also the detailed discussion and all necessary bibliography. The problem
is reduced to solving an equation g(u) = 0, g being a trigonometric polynomial
in one variable of degree 8 sharp, and it cannot be diminished in non-degenerate
cases. Here we extend these results to all types of conic sections.

2. Elliptic Orbits

Let E, E′ be two confocal elliptic orbits with Keplerian elements a, e, i, Ω, ω
for E and the same with a stroke for E ′. In terms of eccentric anomaly u the
position vector r on E is

r/a = P(cos u − e) + S sinu, (1)

where S =
√

1 − e2Q and components of the orthogonal unit vectors P,Q for
all types of conic sections are

Px = cos ω cos Ω − cos i sinω sinΩ,
Py = cos ω sin Ω + cos i sinω cos Ω,
Pz = sin i sinω,

Qx = − sinω cos Ω − cos i cos ω sinΩ,
Qy = − sinω sin Ω + cos i cosω cos Ω,
Qz = sin i cos ω.
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Using (1) one deduces for a normalized squared distance function

ρ(u, u′) =
|r − r′|2

2aa′

an expression

ρ = ρ0 + (PP ′e′ − αe) cos u + P ′Se′ sinu +

(PP ′e − α′e′) cos u′ + PS′e sin u′ − PP ′ cos u cos u′ −
PS′ cos u sinu′ − P ′S sinu cos u′ − SS′ sinu sinu′ +

(α/4)e2 cos 2u + (α′/4)e′2 cos 2u′. (2)

Here

ρ0 =
α + α′

2
+

αe2 + α′e′2

4
− PP ′ee′, (3)

α =
a

a′
, α′ =

a′

a
, (4)

PP ′, PS′, P ′S, and SS′ are scalar products of corresponding vectors. Function
ρ receives its minimal and maximal value at one of the critical points satisfying
equations

A sinu′ + B cos u′ = C, M sinu′ + N cos u′ = K sinu′ cos u′. (5)

Here

A = PS′ sinu − SS′ cos u,

B = PP ′ sin u − P ′S cos u,

C = e′ B − αe sin u (1 − e cos u),

M = PP ′ cos u + P ′S sinu + α′e′ − PP ′ e,

N = PS′ e − SS′ sinu − PS′ cosu,

K = α′e′
2

(6)

are trigonometric polynomials in u of degree 0, 1 or 2.
The system (5) can be reduced (Kholshevhikov & Vassiliev 1999) to an

equation in one variable
g(u) = 0, (7)

g being a trigonometric polynomial of degree 8

g(u) = K2(A2 − C2)(B2 − C2) + 2KC
[
NA(A2 − C2) + MB(B2 − C2)

] −
(A2 + B2)

[
N2(A2 − C2) + M2(B2 − C2) − 2NMAB

]
. (8)

After solving (7) we obtain from the first of equations (5)

cos u′ =
BC + mA

√
D

A2 + B2
, sinu′ =

AC − mB
√

D

A2 + B2
(9)

with
D = A2 + B2 − C2, m = ±1. (10)
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We extend now the results above to all types of conic sections. Marking
elliptic, hyperbolic and parabolic cases in alphabetic order by symbols 1, 2, 3
we obtain 9 cases Kjk and correspondingly 9 functions gjk(u). For example, K23

means that E is a hyperbola and E ′ is a parabola. Evidently g23 �= g32 and the
function (8) coincides with g11.

3. Hyperbolic Cases

1. Let begin with hyperbolic-elliptic case K21. Eccentricity of E is greater
than 1, a is negative, the eccentric anomaly and

√
1 − e2 have imaginary values.

Instead of (1) we have

r/a = P(cosh u − e) − S sinh u, (11)

u ∈ (−∞, ∞) being a hyperbolic analogue of eccentric anomaly, S =
√

e2 − 1Q.
Any expression in old (real for an ellipse) quantities S, u can be easily

rewritten in new ones (real for a hyperbola) using replacement

S �−→ iS, u �−→ i u, (12)

i being the imaginary unit and never being mixed with the inclination. In
particular, this replacement converts (1) to (11) and converts (2) to

ρ = ρ0 + (PP ′e′ − αe) cosh u − P ′Se′ sinhu +

(PP ′e − α′e′) cos u′ + PS′e sinu′ − PP ′ cosh u cos u′ −
PS′ cosh u sin u′ + P ′S sinhu cos u′ + SS′ sinh u sinu′ +

(α/4)e2 cosh 2u + (α′/4)e′2 cos 2u′. (13)

Relations (5) and function (8) are homogeneous with respect to A, B, C and
M , N , K. Hence, after the substitution (12) we may multiply A, B, C or M ,
N , K by any number, not equal to zero. In particular, we may multiply A, B,
C by i and change (6) by

A = PS′ sinhu − SS′ cosh u,

B = PP ′ sinh u − P ′S cosh u,

C = e′ B − αe sinh u (1 − e sinh u),

M = PP ′ cosh u − P ′S sinh u + α′e′ − PP ′ e,

N = PS′ e + SS′ sinh u − PS′ cosh u,

K = α′e′
2
. (14)

Function g21 expression in variables (14) coincides with the expression (8)
for g11, as well as (9,10) for cos u′, sinu′, D hold true.

2. In the case K12 we need the replacement

A �−→ i A, N �−→ iN.
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New functions A, . . . ,K retain their meaning (6), meanwhile the expressions (2),
(5), (8) change

ρ = ρ0 + (PP ′e′ − αe) cos u + P ′Se′ sin u +

(PP ′e − α′e′) cosh u′ − PS′e sinhu′ − PP ′ cos u cosh u′ +

PS′ cos u sinhu′ − P ′S sin u cosh u′ + SS′ sin u sinhu′ +

(α/4)e2 cos 2u + (α′/4)e′2 cosh 2u′, (15)

−A sinhu′ + B cosh u′ = C, M sinhu′ + N cosh u′ = K sinhu′ cosh u′, (16)

g12(u) = −K2(A2 + C2)(B2 − C2) +

2KC
[
NA(A2 + C2) + MB(B2 − C2)

]
+ (17)

(A2 − B2)
[
N2(A2 + C2) + M2(B2 − C2) + 2NMAB

]
.

Instead of (9), (10) we have

cosh u′ =
BC + mA

√
D

B2 − A2
, sinhu′ =

AC + mB
√

D

B2 − A2
(18)

with
D = A2 + C2 − B2, m = ±1. (19)

3. In the case K22 we ought to replace

A �−→ −A, B �−→ iB, C �−→ i C, N �−→ iN,

and for new quantities A, . . . ,K the expressions (14) hold true as in the case
K21. On the contrary, the expressions (16)–(19) hold true as in the case K12.
Finally,

ρ = ρ0 + (PP ′e′ − αe) cosh u − P ′Se′ sinhu +

(PP ′e − α′e′) cosh u′ − PS′e sinhu′ − PP ′ cosh u cosh u′ +

PS′ cosh u sinhu′ + P ′S sinhu cosh u′ − SS′ sinhu sinhu′ +

(α/4)e2 cosh 2u + (α′/4)e′2 cosh 2u′. (20)

4. Parabolic Cases

The best way to treat a parabolic orbit is to present it as a limiting case (ε → 0)
of an ellipse

a =
q

2ε2
, e = 1 − 2ε2, u = 2εσ, (21)

q, σ being the pericentric distance and the tangent of the half of the true
anomaly. The substitution (21) converts (1) to

r/q = P
[
(1 − σ2) + O(ε2)

]
+ Q

[
2σ + O(ε2)

]
. (22)
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1. In the cases K31 and K32 we may deal with

ρ31 = ρ32 =
|r − r′|2

qa′
=

ρ

ε2
,

β =
q

a′
= 2ε2α, β′ =

a′

q
=

α′

2ε2
, S = 2εQ

[
1 + O(ε2)

]
.

Taking (21) into account we have after passing to the limit (ε → 0)

ρ31 = β
(
1 + σ2

)2
+ β′

(
1 +

1

2
e′2

)
+ 2PP ′e′

(
1 − σ2

)
+

4σe′P ′Q − 2
[
(1 − σ2)PP ′ + 2σP ′Q + β′e′

]
cos u′ −

2
[
(1 − σ2)PS′ + 2σQS′

]
sinu′ +

1

2
β′e′2 cos 2u′. (23)

The system (5) holds true if we devide A, B, C by 2ε and M , N , K by 2ε2

and then pass to the limit. So we have for K31

A = PS′σ − QS′,

B = PP ′σ − P ′Q,

C = e′ B − βσ(1 + σ2),

M = PP ′(1 − σ2) + 2σP ′Q + β′e′,

N = −PS′(1 − σ2) − 2σQS′,

K = β′e′2. (24)

Due to the homogeneity of g we may use the expression (8) for g31, as well as
(9), (10) for u′.

2. The case K32 may be deduced from K12 by the similar procedure. So

ρ32 = β
(
1 + σ2

)2
+ β′

(
1 +

1

2
e′2

)
+ 2PP ′e′

(
1 − σ2

)
+

4σe′P ′Q − 2
[
(1 − σ2)PP ′ + 2σP ′Q + β′e′

]
cosh u′ +

2
[
(1 − σ2)PS′ + 2σQS′

]
sinh u′ +

1

2
β′e′2 cosh 2u′. (25)

Relations (24) are valid and we may use the expression (17) for g32, as well
as (18), (19) for u′.

3. Cases K13 and K23 are more complicated and we omit them.

4. In the case K33 we introduce

ρ33 =
|r − r′|2

qq′
=

ρ31

2ε2
,

γ =
q

q′
= 2

β

2ε2
, γ′ =

q′

q
= 2ε2β′, S′ = 2εQ

[
1 + O(ε2)

]
.
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After passing to the limit

ρ33 = γ
(
1 + σ2

)2
+ γ′

(
1 + σ′2

)2 − 2PP ′
(
1 − σ2

) (
1 − σ′2

) −
4σ

(
1 − σ′2

)
P ′Q − 4

(
1 − σ2

)2
σ′PQ′ − 8σσ′QQ′. (26)

One uses (24) for calculations of A, . . . , K. Relations

Bσ′2 − 2Aσ′ + C = 0, Kσ′3 + Mσ′ + N = 0,

and

g33 = K2 C3 + 2K
[
NA(4A2 − 3BC) + MC(2A2 − BC)

]
+

B2
(
N2B + M2C + 2MNA

)

are taken to find σ, σ′.

5. Conclusions

We have proposed 9 functions gjk solving the problem of finding distance be-
tween E and E′ in all possible combinations of conic sections. In the non-
parabolic cases (j ≤ 2, k ≤ 2) functions gjk are trigonometric or hyperbolic
polynomials of degree 8. Remember that the degree of a corresponding alge-
braic polynomial must be multiplied by a factor 2. In the cases when only one
of the orbits is parabolic functions g31, g32, g13, g23 are trigonometric or hyper-
bolic polynomials of degree 6 or algebraic polynomial of degree 12. Hence, all of
them can be reduced to an algebraic polynomial of degree 12. In the case when
the both orbits are parabolic, function g33 represents an algebraic polynomial of
degree 9 only.

For non-diagonal elements of Kjk it is useful to choose the simplest function
between gjk and gkj . Supposing a trigonometric equation being simpler than a
hyperbolic one, we recommend the function g12 for the case ellipse–hyperbola.
Supposing an algebraic equation being simpler than a trigonometric or hyper-
bolic one, we recommend the functions g31 and g32 for the cases parabola–ellipse
and parabola–hyperbola.
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