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Abstract. In the last decades more and more all-sky surveys created an enormous
amount of data which is publicly available on the Internet. Crowd-sourcing projects
such as Galaxy-Zoo and Radio-Galaxy-Zoo used encouraged users from all over the
world to manually conduct various classification tasks. The combination of the pattern-
recognition capabilities of thousands of volunteers enabled scientists to finish the data
analysis within acceptable time. For up-coming surveys with billions of sources, how-
ever, this approach is not feasible anymore. In this work, we present an unsupervised
method that can automatically process large amounts of galaxy data and which gener-
ates a set of prototypes. This resulting model can be used to both visualize the given
galaxy data as well as to classify so far unseen images.

1. Motivation

Today, the manual inspection by an expert of all objects in the available large-scale as-
tronomical databases is impossible. Caused by the exponential growth in size and com-
plexity of data-sets in astronomy, new explorative analysis methods are required. For
a few of the current surveys, volunteers have addressed some tasks quite successfully
(e.g., classification). The Galaxy Zoo project is a good example of how to make use
of more than 100,000 volunteers to derive a morphological analysis for about 900,000
galaxies (Lintott et al. 2011). However, the projected increase in the number of objects
for the next generation of all-sky survey missions renders such a manual inspection im-
possible. Another challenge is that volunteers might not have the required background
to detect rare and interesting objects. Each crowd-source project is laid out to deal with
some specific task. Thus, new scientific questions/data-sets could require the definition
of new crowd-source projects. Therefore new methods need to be developed that com-
bine semi-automatic data analysis schemes with the visual recognition capabilities, the
creativity, and keen perception of the human brain. By using computers to pre-process
and pre-analyze the data, we try to assist astronomers to conduct such tasks in a semi-
automatic manner instead of a fully manual analysis via crowd-sourcing projects. Sim-
ilar and frequent objects can be combined/sorted by machine learning models, which
yield only a single representative that needs manual inspection by the scientist. The goal
of our work is to enable astronomers to efficiently perform a morphological analysis on
huge amounts of pre-processed data (e.g., images or radio-synthesis data). Concerning
the morphological taxonomy of galaxies, Hubble’s tuning-fork diagram provides a pop-
ular approach to organize the observed classes. Within its limitations, this diagram is a
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nice way of presenting the different classes of galaxies. Besides, this typical diagram
depicts a topological sorting of the different galaxy classes.

In the past, dimensionality reduction techniques that are able to compute topologi-
cal maps, i.e., latent embeddings, haven shown good results (Kramer et al. 2013) based
on images of galaxies from the Sloan Digital Sky Survey (SDSS) (Ahn et al. 2014).
Those dimension reduction techniques aim at projecting complex, high-dimensional
data to a low-dimensional feature spaces while preserving similarities and neighbor-
hood relations between the original data points. This is usually achieved by computing
a mapping F : IR

d → IR
q from data space to latent space with q � d for a given set

of n patterns (images) yi ∈ IR
d with i = 1, . . . , n. When dealing with imaging data, the

problem of defining an appropriate measure of similarity arises. Typically, morpholog-
ical features are extracted and a simple but well known metric such as the Euclidean
distance is used (de la Calleja & Fuentes 2004; Wijesinghe et al. 2010).

In this paper, we present a novel approach based on a computationally intensive
rotation and flipping invariant similarity measure. We employ a modified version of
self-organizing maps (Kohonen 1989). Several non-linear dimensionality reduction
techniques have been tested, and the approach from the area of artificial neural networks
based on embedding patterns at fixed latent positions performed best. Our Parallelized
rotation/flipping INvariant Kohonen map (PINK) framework makes use of multi-core
CPU/GPU environments.This paper is structured as follows. In Section 2 we describe
the PINK framework in general, the adopted similarity measure, and the paralleliza-
tion steps. The data-set as well as the required pre-processing steps are described in
Section 3 along with the design of the experiments. After presenting the empirical re-
sults in Section 4, we draw our conclusions in Section 5.

2. PINK

We promote a framework which generates a classification scheme in an unsupervised
way and, thus, permits a semi-automatic analysis of the data by the user. In particu-
lar, we employ Kohonen-maps as a simple yet effective dimensionality reduction tech-
nique, which in our case, projects data to a two-dimensional map. Kohonen-maps are
a specialized form of neural networks where every fixed node/neuron p ∈ P of the la-
tent space contains a derived prototype after having trained the model. The neurons

P =
{

p j = (w j, c j) | w j ∈ IR
d, c j ∈ IN

2, j = 1, . . . , µP

}

map every prototype or weight-

vector w j to a coordinate c j in the map. In the training phase, iteratively t times the

n patterns yi ∈ IR
d with i = 1, . . . , n are applied to the map. By calculating a simi-

larity measure ∆(y,w j) between a pattern y ∈ IR
d and the weight w j ∈ IR

d of every
node p j ∈ P of the map, the closest (winning) neuron q(y) = argmin j=1,...,µP

∆(y,w j) is
determined. Then the neurons are updated based on the distance to the winning neu-
ron in the map d(cq(y), c j) and the number of applied iterations t via a training function
f (d(cq(y), c j), t). This is done by setting the weight-vector w j of a neuron p j to the new

value w′
j
= w j+ (φ( j)(y)−w j) · f (d(cq(y), c j), t), where φ( j) is the identity function in the

standard Kohonen-map algorithm and will be used here to align the coordinate systems
of y and w j. The function f (cq(y), p j), t) consists of a distance-dependent part and an
iteration-dependent part. Currently PINK supports the use of a Gaussian or a Mexican
hat as the distance component while using a simple linear damping based on the num-
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ber of iterations t. Other distance components as well as iteration-dependent functions
can be easily added.

The PINK framework allows to train Cartesian as well as hexagonal maps, both in
a continuous repeating or edge-limited version. Because the hexagonal shape has six
instead of just four distinct directions and just allows for natural numbers it was added
to the framework. We could not determine huge differences when comparing the results
based on astronomical images, besides that corner effects on the edge-limited version
are not as dominant on the hexagonal map as on the Cartesian version. After the training
phase is finished, one is able to match an image/pattern y to the derived prototypes P

and thereby retrieve a coordinate c in the map. By inspecting and annotating the derived
prototypes, a scientist inspects all matching objects at once. Therefore the amount of
objects to be inspected is reduced to the number of prototypes in the map.

2.1. Similarity Measure

As described above, the training of the Kohonen-map depends on a similarity measure
∆(y,w j) between the image y and the weight of the neuron p j. When inspecting images
by eye, the brain automatically scales, aligns, distorts, and interpolates the informa-
tion such that objects are perceived to be similar or not. Pre-processing the images to
align them to the principal axis of their main component and using a simple pixel-wise
Euclidean distance was one of the first approaches to deal with rotation. In the past,
we carried out multiple tests with rotation invariant similarity measures (Polsterer et al.
2012). Up to now, we achieved the best results with Fourier transformed circular slices
of the images. This method has the limitation of losing the information of complex and
weak structures and therefore just allowed a sorting based on dominant morphological
features. For the imaging data at hand, a rotation and flipping invariant similarity mea-
sure is essential to achieve satisfying results. To calculate the similarity, our approach
basically calculates the Euclidean distances for all possible rotations/flipped/un-flipped
objects in the map to determine the best match (see Figure 1). It can be shown that this
operation still gives rise to a valid distance metric.

Figure 1. Both image transformations as they are applied to measure the similar-
ity are shown exemplarily. The flipping (left) is shown on FIRSTJ075843.0+611936
and the rotation (right) is shown on FIRSTJ072529.5+614732.

2.2. Speedup via Parallelization

Since the considered brute-force comparisons between an image y and all the neu-
rons P are computationally very demanding, this task depicts an ideal candidate for
massively parallel implementations. The current version makes use of modern multi-
core systems while the GPU-based version is currently further optimized. In a first
step all rotated/flipped versions of the image y are created in parallel by using a set
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Figure 2. Examples for the imaging data used. Note the correlated noise
in the background as well as the residuals from the imaga generation pro-
cess. The objects shown are: FIRSTJ070159.0+621123, FIRSTJ070153.7+640348,
FIRSTJ070406.6+625235, FIRSTJ070557.2+625303, FIRSTJ072749.3+614904.

of image transformations Φ = {φ1, . . . , φN}. Next the Euclidean distance between the
pre-transformed images and all neurons is calculated in parallel and the winning neuron
q(y) is determined. Finally, the weights w j of all neurons are modified in parallel. In
the update step, the alignment of the neurons with respect to the training image y must
be considered (via a proper choice of φ( j)).

3. Data and Experiment

To test the performance and usability of our approach, we performed experiments on
synthetic data as well as on real astronomical images. As the synthetical data was just
use to ensure that we are able to reproduce simple geometric shapes, only the results on
the real-word data will be shown.

The data used for our experiment is radio-synthetis data taken from the Radio
GalaxyZoo project (http://radio.galaxyzoo.org). All of the 206,399 radio im-
ages from the FIRST survey (Becker et al. 1994) that are available have been processed
with PINK. In Figure 2 some images of the used data are presented. We preprocessed
the data in the following way: Regular cutouts with 128 px × 128 px have been created
even though just 64 px × 64 px were used in the map. This size allows to create rotated
versions for the similarity measure without having non-valid pixels in the corners. Note

that just
√

2 × 64 px would be an appropriate size in our case. In addition, the images
where scaled to values between 0 and 1 and every pixel below 2σ was masked as back-
ground and set to an according value. Finally, a hexagonal map of the size of 21 × 21
nodes was trained with the pre-processed data.

4. Results

After having performed the training on the 200 k images from Radio GalaxyZoo, we re-
trieved the map presented in Figure 3. This resulting map shows the derived prototypes
which allow a clear separation into different morphological classes (Figure 4). Thus,
by inspecting the map, one can basically analyze all objects represented by the proto-
types simultaneously. For some objects, a heat map was created showing the regions
in the map that match best (see Figure 6). Based on this mapping to the prototypes, it
is possible to transfer the annotations created for the map directly to every individual
image. Those objects that are not well represented by the prototypes can directly be
extracted by using the absolute similarity value of the best match. In our experiment,
just a fraction of a percent turned out to be such an outlier based on the analysis of
the distribution (Figure 5) of the absolute similarity values. They can be concerned as
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Figure 3. Resulting hexagonal Kohonen-map containing the derived prototypes.

Figure 4. Resulting overview of
the Kohonen-map with morphological
classes being marked and labeled in red.

Figure 5. Distribution of the
distance of the images to the
prototypes. The area of the out-
liers is marked gray.

Figure 6. For some selected objects, the associated heatmaps are shown. Each
individual heatmap directly reflects the similarity of an object to all the neurons in
the map (blue represents similar while red reflects different neurons).
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Figure 7. A list of outliers which have been selected based on the quality of their
fit to the prototypes in the map. The corresponding heatmaps give an idea to which
prototypes they could belong to even though they are not as good represented by the
prototypes as the majority of objects.

interesting objects which require manual inspection by an expert. In Figure 7, some of
the outliers that have been automatically extracted are shown. All the extracted outliers
show interesting morphological features.

5. Conclusion

The proposed general method shows that unsupervised dimension reduction techniques
can help astronomers to analyze huge amounts of data. Besides retrieving a classifica-
tion scheme, one is able to efficiently detect outliers. Those are the objects which need
to be analyzed by an expert. The majority of similar objects just needs to be inspected
on the basis of a few representatives.
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