
Astronomical Data Analysis Software and Systems XXX
ASP Conference Series, Vol. 532
J. E. Ruiz, F. Pierfederici, and P. Teuben, eds.
c©2021 Astronomical Society of the Pacific

Machine-Assisted Discovery Through Identification and
Explanation of Anomalies in Astronomical Surveys

Kiri L. Wagstaff, Eric Huff, and Umaa Rebbapragada

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;
kiri.wagstaff@jpl.nasa.gov

Abstract. Data volumes in modern astronomical surveys are large, and human atten-
tion is comparatively scarce. The most interesting sources are rare and may therefore go
permanently buried and unknown in large archives. Many science goals from planned
sky surveys (e.g., Roman, SPHEREx, and Euclid) require exquisitely precise measure-
ments taken over billions of galaxies and stars. Existing validation techniques appear
unlikely to scale to the next generation of large sky surveys. We propose the use of ma-
chine learning to identify, group, and explain anomalies within very large data sets. The
goal is to quickly distinguish erroneous measurements and expected patterns in the data
from sources and statistical correlations with true astrophysical origins. We illustrate
the process of identifying and explaining anomalies in a study conducted on sources
observed by the Dark Energy Survey. We found that 96% of automatically identified
outliers in a subset of 11M sources were likewise discarded by humans. In addition,
several unusual objects led to follow-up spectral observations with the Palomar Obser-
vatory. We hypothesize that this discovery process, when applied to other large-scale
sky survey data sets, can result in improved science yield and catalog validation.

1. Introduction

Machine learning methods can automate tedious data analysis and classification processes by
learning to replicate human decision-making. Can they also help make new discoveries? Cur-
rent astronomical surveys are generating measurements for billions of sources (e.g., WISE,
Gaia, and the Dark Energy Survey), and future projects such as Euclid, the Roman Space Tele-
scope, and the Rubin Observatory will make measurements for at least an order of magnitude
more sources. The immense anticipated data volumes pose a challenge for data validation
and for mining the catalog for new discoveries. Data validation is the process of filtering out
problematic observations and artifacts, and current manual review procedures will not keep up.
Manual review also led to discoveries such as quasars (Schmidt 1963), radio pulsars (Hewish
et al. 1968), so-called ‘green pea’ galaxies (Cardamone et al. 2009), and cosmic gamma-ray
bursts (Klebesadel et al. 1973). Without a scalable diagnostic process that is functionally simi-
lar to human inspection, we will lose this mode of discovery.

Machine learning algorithms now see wide use in large astronomical data sets (Way et al.
2012). They are being used to classify stars and galaxies in large catalogs (Weir et al. 1995),
classify supernovae from light curves (Charnock & Moss 2017), detect evidence of exoplanets
in light curves (Pearson et al. 2017; Shallue & Vanderburg 2018), and highlight unusual ob-
servations or outliers that merit additional study (Nun et al. 2014, 2016; Giles & Walkowicz
2019).

We propose the use of machine learning methods to assist validation and discovery efforts
within large sky survey data sets. First, we identify anomalies within the data set. For data sets
with billions of sources, the list of anomalous measurements is itself likely to be so large as to
defy manual review. Therefore, we employ automated clustering methods to identify groups
anomalies that can be reviewed collectively. To accelerate review and interpretation, we use
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Figure 1. (Left) Comparison of anomaly detection methods against human val-
idation. Dashed black line would show perfect agreement. (Right) Anomalies of
scientific interest: likely supernovae (left column), strong lens (top right), and com-
pact star-forming galaxy (lower right).

methods to automatically generate explanations that describe each group. We illustrate this
process by applying it to data from the Dark Energy Survey (DES), a cosmological study that
has collected multi-wavelength observations of millions of galaxies. The success of machine-
assisted anomaly analysis for the DES data encourages the application of the same approach to
new and upcoming sky surveys, with great potential for time savings and new discoveries.

2. Anomaly Detection, Grouping, and Review Methods

We investigated four anomaly detection methods. The Isolation Forest (Liu et al. 2008) iden-
tifies a set of global anomalies in terms of how separable each item is from the full data set.
The algorithm builds an ensemble of random binary trees where each node employs a randomly
chosen feature and threshold. Anomalies are those items that follow very short paths from root
to leaf (i.e., items that are quickly isolated). The DEMUD (Wagstaff et al. 2013) method instead
seeks to find a set of diverse anomalies by incrementally growing a model of known anomalies
and repeatedly selecting the item most different from what has already been chosen. DEMUD
uses a singular value decomposition (SVD) to model previous anomalies; new items with un-
usual properties will have high reconstruction error. The Elliptic Envelope fits a multivariate
Gaussian model to the data and ranks items by their negative Mahalanobis distance from the
mean. The Minimum Covariance Determinant (MCD) estimator refines this approach by using
a robust (outlier-tolerant) estimate of the multivariate mean and standard deviation (Rousseeuw
& Hubert 2017).

We compared all methods on a data set that consists of 11.9M objects observed by the Dark
Energy Survey (DES). The first version of this catalog, released in June 2018, incorporated only
cuts on signal-to-noise, resolution, masks against known detector anomalies and data quality
indicators, and the automated data quality flags produced during processing. In December
2019, the full catalog was released after 18 months of extensive manual vetting. Therefore,
we were able to use the second version of the catalog as a validation set for anomaly detection
on the first version. We generated a list of the top anomalies according to each algorithm and
tallied how many were also rejected by the independent human review. Figure 1 (left) shows
all four algorithms assessed on their first ∼5000 selections. The Isolation Forest achieved the
best agreement with human filtering. In total, the Isolation Forest selected 14,491 anomalies, of
which 13,953 (96%) were also filtered by humans. Therefore, we chose the Isolation Forest as
our anomaly detector for this investigation.
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Grouping Anomalies for Fast Review. Given the global ranking of anomalies produced
by the Isolation Forest, there may be redundancy within the ranked list in which many simi-
lar anomalies appear sequentially. To reduce the effort required to review the anomalies, we
use data clustering to group anomalies into categories, similar in motivation to the X-PACS
method (Macha & Akoglu 2018) but leveraging the output of the Isolation Forest to inform the
groupings. In this study, we used the k-means clustering algorithm (MacQueen 1967) to group
anomalies into k = 50 clusters.

Review of Anomaly Groups. Each anomaly cluster can be inspected to determine whether
it consists of data or measurement errors, and therefore should be filtered out, or if it shows evi-
dence of a new category of sky objects. We developed a web-based Anomaly Explorer to facili-
tate the review process that shows each anomaly as well as observations of the same sky location
in other surveys such as GALEX and WISE. We examined the 538 Isolation Forest anomalies
that were not filtered in the version 2 data set and found that 38% were the result of measure-
ment error (e.g., the galaxy model fit failed), 33% were due to data corruption (e.g., satellite
tracks, moving objects, and transients), just 9% were normal objects (false positives), and 20%
were objects of potential scientific interest (e.g., supernovae, strong lensing, and sources with
unusual spectra that merit follow-up).

We also tested a framework that uses Causal Graphical Models (Pearl 1995) to generate
an explanation for each anomaly group. We expanded the feature space to include measures
of data quality, then used the PC algorithm (Spirtes et al. 2000) to generate a directed acyclic
graph to highlight which features best explained the anomaly status of a cluster. Clusters with
graphs that highlighted data quality features tended to be non-astrophysical anomalies, while
graphs where anomaly status was connected to a measured feature (e.g., brightness in a single
band) tended to be astrophysical.

3. Results: Anomalous Galaxies within the Dark Energy Survey

Figure 1 (right) shows four anomalies of scientific interest. The first column shows two sources
that only appear in one band (green, red) which suggests that the source brightened only during
the time that band was observed. Since they are also overlaid on diffuse whitish objects, we
interpret these transient bright sources as supernovae within distant galaxies. The upper right
observation with multiple sources may be a strong lensing system. The lower right (purple)
source has an anomalous SED, corresponding to a strong r-band excess. Follow-up optical
spectroscopy of this source with Palomar Observatory (thanks to Daniel Stern) showed that the
r-band excess was indeed astrophysical, arising from extreme [OIII] emission in a compact star-
forming galaxy at redshift ∼0.35. We have identified a small population of similar anomalous
emission-line sources with high apparent star formation rates, and analysis is ongoing.

4. Conclusions

We found that 96% of the DES anomalies identified via machine learning were identical to
those found by humans, and the remaining 4% of anomalies yielded new kinds of problematic
observations that should have been removed as well as some unusual objects with genuinely
interesting properties. In other words, an uncalibrated outlier detection algorithm correctly
identified the bulk of the sources removed by exhaustive human validation, while also identify-
ing a substantial additional population of sources that were missed during this enormous work
effort. We are not proposing that this procedure replace the normal work of human validation on
survey data. However, evidence suggests that this process could improve the quality of science
catalogs while dramatically reducing the work required to produce them.
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