ASPCS
 
Back to Volume
Paper: Hybrid minimization algorithm for computationally expensive multi-dimensional fitting
Volume: 535, Astronomical Data Analysis Software and Systems XXXI
Page: 371
Authors: Rubtsov, E.; Chlingarian, I.; Katkov, I.; Grishin, K.; Goradzhanov, V.; Borisov, S.
Abstract: Multi-dimensional optimization is widely used in virtually all areas of modern astrophysics. However, it is often too computationally expensive to evaluate a model on-the-fly. Typically, it is solved by pre-computing a grid of models for a predetermined set of positions in the parameter space and then interpolating. Here we present a hybrid minimization approach based on the local quadratic approximation of the χ2 profile from a discrete set of models in a multidimensional parameter space. The main idea of our approach is to eliminate the interpolation of models from the process of finding the best-fitting solution. We present several examples of applications of our minimization technique to the analysis of stellar and extragalactic spectra.
Back to Volume