ASPCS
 
Back to Volume
Paper: Detailed Abundances in a Metal-Poor Stellar Stream
Volume: 432, New Horizons in Astronomy: Frank N. Bash Symposium 2009
Page: 239
Authors: Roederer, I. U.; Sneden, C.; Thompson, I. B.; Preston, G. W.; Shectman, S. A.
Abstract: We present the results of a detailed abundance analysis of one of the confirmed building blocks of the Milky Way stellar halo, a kinematically-coherent metal-poor stellar stream. We have obtained high resolution and high S/N spectra of 8 confirmed and 4 rejected stream members using the MIKE spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the 2dCoude spectrograph on the Smith Telescope at McDonald Observatory. We have derived abundances or upper limits for nearly 50 species of more than 40 elements in each of these stars. The stream members show a range of metallicity (–2.5< [Fe/H] <–1.5) but are otherwise chemically homogeneous, with the same star-to-star chemical dispersion in [X/Fe] as halo stars. They show no evolution in the α or Fe-group elements over the range of metallicity. The stream does not resemble a globular cluster in that its members show a range of metallicities, and the small chemical dispersion and lack of chemical evolution demonstrate that it is also unlike the classical Milky Way dwarf spheroidal galaxies. Our results support the notion that a significant fraction of the Milky Way stellar halo was formed from accreted systems, and these systems likely did not resemble the present-day globular clusters or luminous dwarf galaxies. This stream is mildly enriched (in, e.g., [Eu/Fe]) by material produced by the main and weak components of the rapid neutron-capture process and shows no evidence for enrichment by the slow neutron-capture process. Except for the observed metallicity range of the stream stars, the enrichment pattern of the stream is nearly identical to that of the massive metal-poor globular cluster M15. The kinematics of M15 and the stream are also similar. It is possible that both systems may have originated from a common progenitor but not likely that the stream originated from M15.
Back to Volume