ASPCS
 
Back to Volume
Paper: The Herschel Planetary Nebula Survey (HerPlaNS)
Volume: 464, Circumstellar Dynamics at High Resolution
Page: 59
Authors: Ueta, T.; Ladjal, D.; HerPlaNS team
Abstract: The Herschel Planetary Nebula Survey (HerPlaNS, PI: T. Ueta) is one of the largest Herschel Open Time 1 program in which we explore the far-infrared aspects of 11 planetary nebulae (PNs) with the Herschel Space Observatory, exploiting its unprecedented capabilities in broadband photometry mapping, spectral mapping, and integral-field spectroscopy. We perform (1) deep PACS/SPIRE broadband mapping to account for the coldest dust component of the nebulae and determine the spatial distribution of the dusty haloes in the target PNs, (2) exhaustive PACS/SPIRE line mapping in far-IR atomic and molecular lines in two representative PNs to diagnose the energetics of the nebulae as a function of location in the nebulae, and (3) PACS/SPIRE spectral-energy-distribution spectroscopy at several positions in the target PNs to understand variations in the physical conditions as a function of location in the nebulae, to build a more complete picture of the interplay between the dust and gas components as a function of location in the nebulae. The HerPlaNS survey is distinguished from the existing guaranteed-time Key Program (KPGT), “Mass Loss of Evolved StarS” (MESS, PI: M. Groenewegen, including 10 PNs) by the extra dimension added by spectral mapping and integral-field spatio-spectroscopy that permit simultaneous probing of the gas and dust component in the target PNs. Through these investigations, we will consider the energetics of the entire gas-dust system as a function of location in the nebulae, which is a novel approach that has rarely been taken previously. HerPlaNS is conducted in collaboration with the Chandra Planetary Survey (ChanPlaNS, PI: J.H. Kastner) to furnish substantial PN data resources that would allow us—a community of PN astronomers—to tackle a multitude of unanswered issues in PN physics, from the shaping mechanisms of the nebulae to the energetics of the multi-phased gas-dust system surrounding the central white dwarf. These PN surveys, combined with the community assets from optical to mid-IR, will provide an extremely valuable and comprehensive compilation of PN resource that carries a significant Legacy value. In this contribution we will present the HerPlaNS program, its aim, the adopted observing technics and the latest status of the data reduction.
Back to Volume