Back to Volume
Paper: An Anisotropic-Alfvénic-turbulence-based Solar Wind Model with Proton Temperature Anisotropy
Volume: 474, Numerical Modeling of Space Plasma Flows (ASTRONUM2012)
Page: 153
Authors: Li, B.; Habbal, S. R.
Abstract: How the solar wind is accelerated to its supersonic speed is intimately related to how it is heated. Mechanisms based on ion-cyclotron resonance have been successful in explaining a large number of observations, those concerning the significant ion temperature anisotropy above coronal holes in particular. However, they suffer from the inconsistency with turbulence theory which says that the turbulent cascade in a low-beta medium like the solar corona should proceed in the perpendicular rather than the parallel direction, meaning that there is little energy in the ion gyro-frequency range for ions to absorb via ion-cyclotron resonance. Recently a mechanism based on the interaction between the solar wind particles and the anisotropic turbulence has been proposed, where the perpendicular proton energy addition is via the stochastic heating (Chandran et al. 2011). We extend this promising mechanism by properly accounting for the effect of proton temperature anisotropy on the propagation of Alfvén waves, for the radiative losses of electron energy, and for the field line curvature that naturally accompanies solar winds in the corona. While this mechanism was shown in previous studies to apply to the polar fast solar wind, we demonstrate here for the first time that it applies also to the slow wind flowing along field lines bordering streamer helmets.
Back to Volume