ASPCS
 
Back to Volume
Paper: White Dwarf Stars: A Brief Overview
Volume: 479, Progress in Physics of the Sun and Stars
Page: 211
Authors: Fontaine, G.; Brassard, P.; Charpinet, S.; Randall, S. K.; Van Grootel, V.
Abstract: We present a brief summary of what is currently known about white dwarf stars, with an emphasis on their evolutionary and internal properties. As is well known, white dwarfs represent the end products of stellar evolution for the vast majority of stars and, as such, bear the signatures of past events (such as mass-loss, mixing phases, loss and redistribution of angular momentum, and thermonuclear burning) that are of essential importance in the evolution of stars in general. In addition, white dwarf stars represent ideal testbeds for our understanding of matter under extreme conditions, and work on their constitutive physics (neutrino production rates, conductive and radiative opacities, interior liquid and solid equations of state, partially ionized and partially degenerate envelope equations of state, diffusion coefficients, line broadening mechanisms) is still being actively pursued. Given a set of constitutive physics, cooling white dwarfs can be used advantageously as cosmochronometers. Moreover, the field has been blessed by the existence of four distinct families of pulsating white dwarfs, each mapping a different evolutionary phase, and this allows the application of the asteroseismological method to probe and test their internal structure and evolutionary state.
Back to Volume