|
|
Paper: |
Morphological Classification of Astronomical Images with Limited Labelling |
Volume: |
532, ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXX |
Page: |
307 |
Authors: |
Soroka, A.; Meshcheryakov, A.; Gerasimov, S. |
Abstract: |
The task of morphological classification is complex for simple parameterization, but important for research in the galaxy evolution field. Future galaxy surveys (e.g. EUCLID) will collect data about more than a 109 galaxies. To obtain morphological information one needs to involve people to mark up galaxy images, which requires either a considerable amount of money or a huge number of volunteers. We propose an effective semi-supervised approach for galaxy morphology classification task, based on active learning of adversarial autoencoder (AAE) model. For a binary classification problem (top level question of Galaxy Zoo 2 decision tree) we achieved accuracy 93.1% on the test part with only 0.86 millions markup actions, this model can easily scale up on any number of images. Our best model with additional markup achieves accuracy of 95.5%. To the best of our knowledge it is a first time AAE semi-supervised learning model used in astronomy. |
|
|
|
|