ASPCS
 
Back to Volume
Paper: Clues to the Formation of Lenticular Galaxies Using Spectroscopic Bulge–Disk Decomposition
Volume: 480, Structure and Dynamics of Disk Galaxies
Page: 161
Authors: Johnston, E. J.; Aragón-Salamanca, A.; Merrifield, M. R.; Bedregal, A. G.
Abstract: Lenticular galaxies have long been thought of as evolved spirals, but the processes involved to quench the star formation are still unclear. By studying the individual star formation histories of the bulges and disks of lenticulars, it is possible to look for clues to the processes that triggered their transformation from spirals. To accomplish this feat, we present a new method for spectroscopic bulge–disk decomposition, in which a long-slit spectrum is decomposed into two one-dimensional spectra representing purely the bulge and disk light. We present preliminary results from applying this method to lenticular galaxies in the Virgo and Fornax Clusters, in which we show that the most recent star formation activity in these galaxies occurred within the bulges. We also find that the star formation timescales of the bulges are longer than the disks, and that more massive galaxies take longer to lose their gas during the transformation. These results point towards slow processes, such as ram-pressure stripping or harassment, being the mechanism responsible for the quenching of star formation in spirals, followed by a burst of star formation in the central regions from the gas that has been funnelled inwards through the disk.
Back to Volume