Back to Volume
Paper: A search for new galactic microquasars
Volume: 261, The Physics of Cataclysmic Variables and Related Objects
Page: 301
Authors: Tsarevsky, G. S.; Pavlenko, E. P.; Stathakis, R. A.; Kardashev, N. S.; Slee, O. B.
Abstract: The population of microquasars in our Galaxy} Accretion onto a supermassive black hole with a strong surrounding magnetic field can supply the necessary energy for AGNs (Kardashev 1995). Inside our own galaxy, accretion from a stellar component onto a black hole (or neutron star) in a close binary system can produce a similar kind of phenomenon. X-ray observations made by UHURU in 1978 attracted attention to the peculiar object SS 433 located in the very centre of the supernova remnant W50. When the orbital period was first determined, Shklovski (1978) suggested that SS 433 is a binary system associated with the ejection of relativistic particles, which are responsible for the strong, periodic radio emission. Many observations of SS 433 led to the conclusion that the system is a close binary consisting of a massive OB star and a neutron star or a black hole surrounded by a bright accretion disk opaque to X-rays. SS 433 and similar objects have been assigned to a special class called "microquasars" (see comprehensive review by Mirabel & Rodriguez, 1999). Only about 30 of ~280 known X-ray binaries (XRBs) have been detected in radio (Fender et al. 1997), and only a few of them have characteristic radio emission and morphology associated with the microquasars' family. Radio images of such objects bear a striking similarity to the structures of AGN: they have a compact core and two-sided jets of relativistic particles. Flux variability and superluminal motions are also quite common for the microquasars. GRO J1655--40 is a representative object of this class (Tingay at al. 1995). First discovered in X-rays, it produces relativistic radio jets with β = 0.92, and has an angular extent of 1arcsec. It is the intention of the project described here to search for similar features with the aim of increasing the number of known microquasars.
Back to Volume