ASPCS
 
Back to Volume
Paper: Time-dependent Processes in the Sheath Between the Heliospheric Termination Shock and the Heliopause
Volume: 488, 8th International Conference of Numerical Modeling of Space Plasma Flows (ASTRONUM 2013)
Page: 167
Authors: Pogorelov, N. V.; Borovikov, S. N.; Heerikhuisen, J.; Kim, T. K.; Zank, G.P.
Abstract: In this paper, we present the results of our numerical simulation of the solar wind (SW) interaction with the local interstellar medium (LISM). In particular, a solar cycle model based on Ulysses measurements allowed us to estimate the interrelationship between heliospheric asymmetries due to the action of the interstellar magnetic field and the decrease in the solar wind ram pressure. We evaluate the possibility to develop an improved approach to derive SW boundary conditions from interplanetary scintillation data. It is shown that solar cycle affects stability of the heliopause in a way favorable for the interpretation of Voyager 1 “early” penetration into the local interstellar medium. We also show that the heliotail is always a subject of violent Kelvin–Helmholtz instability, which ultimately should make the heliotail indistinguishable from the LISM. Numerical results are obtained with a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. We have enhanced the code with additional physical treatments for the transport of turbulence and acceleration of pickup ions in interplanetary space and at the termination shock.
Back to Volume